រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

3x-y=6,5x+y=10
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x-y=6
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=y+6
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(y+6\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=\frac{1}{3}y+2
គុណ \frac{1}{3} ដង y+6។
5\left(\frac{1}{3}y+2\right)+y=10
ជំនួស \frac{y}{3}+2 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 5x+y=10។
\frac{5}{3}y+10+y=10
គុណ 5 ដង \frac{y}{3}+2។
\frac{8}{3}y+10=10
បូក \frac{5y}{3} ជាមួយ y។
\frac{8}{3}y=0
ដក 10 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=0
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{8}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=2
ជំនួស 0 សម្រាប់ y ក្នុង x=\frac{1}{3}y+2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=2,y=0
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3x-y=6,5x+y=10
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&-1\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\10\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}3&-1\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&-1\\5&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-5\right)}&-\frac{-1}{3-\left(-5\right)}\\-\frac{5}{3-\left(-5\right)}&\frac{3}{3-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}6\\10\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\-\frac{5}{8}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}6\\10\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 6+\frac{1}{8}\times 10\\-\frac{5}{8}\times 6+\frac{3}{8}\times 10\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
ធ្វើនព្វន្ត។
x=2,y=0
ទាញយកធាតុម៉ាទ្រីស x និង y។
3x-y=6,5x+y=10
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
5\times 3x+5\left(-1\right)y=5\times 6,3\times 5x+3y=3\times 10
ដើម្បីធ្វើឲ្យ 3x និង 5x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 5 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
15x-5y=30,15x+3y=30
ផ្ទៀងផ្ទាត់។
15x-15x-5y-3y=30-30
ដក 15x+3y=30 ពី 15x-5y=30 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-5y-3y=30-30
បូក 15x ជាមួយ -15x។ ការលុបតួ 15x និង -15x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-8y=30-30
បូក -5y ជាមួយ -3y។
-8y=0
បូក 30 ជាមួយ -30។
y=0
ចែកជ្រុងទាំងពីនឹង -8។
5x=10
ជំនួស 0 សម្រាប់ y ក្នុង 5x+y=10។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=2
ចែកជ្រុងទាំងពីនឹង 5។
x=2,y=0
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។