\left\{ \begin{array} { l } { 3 x - y = 11 } \\ { 5 x + 3 y = 9 } \end{array} \right.
ដោះស្រាយសម្រាប់ x, y
x=3
y=-2
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
3x-y=11,5x+3y=9
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x-y=11
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=y+11
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(y+11\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=\frac{1}{3}y+\frac{11}{3}
គុណ \frac{1}{3} ដង y+11។
5\left(\frac{1}{3}y+\frac{11}{3}\right)+3y=9
ជំនួស \frac{11+y}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 5x+3y=9។
\frac{5}{3}y+\frac{55}{3}+3y=9
គុណ 5 ដង \frac{11+y}{3}។
\frac{14}{3}y+\frac{55}{3}=9
បូក \frac{5y}{3} ជាមួយ 3y។
\frac{14}{3}y=-\frac{28}{3}
ដក \frac{55}{3} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-2
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ \frac{14}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{1}{3}\left(-2\right)+\frac{11}{3}
ជំនួស -2 សម្រាប់ y ក្នុង x=\frac{1}{3}y+\frac{11}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-2+11}{3}
គុណ \frac{1}{3} ដង -2។
x=3
បូក \frac{11}{3} ជាមួយ -\frac{2}{3} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=3,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3x-y=11,5x+3y=9
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&-1\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\9\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&-1\\5&3\end{matrix}\right))\left(\begin{matrix}3&-1\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&3\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&-1\\5&3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&3\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&3\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-5\right)}&-\frac{-1}{3\times 3-\left(-5\right)}\\-\frac{5}{3\times 3-\left(-5\right)}&\frac{3}{3\times 3-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}11\\9\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}&\frac{1}{14}\\-\frac{5}{14}&\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}11\\9\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}\times 11+\frac{1}{14}\times 9\\-\frac{5}{14}\times 11+\frac{3}{14}\times 9\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=3,y=-2
ទាញយកធាតុម៉ាទ្រីស x និង y។
3x-y=11,5x+3y=9
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
5\times 3x+5\left(-1\right)y=5\times 11,3\times 5x+3\times 3y=3\times 9
ដើម្បីធ្វើឲ្យ 3x និង 5x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 5 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
15x-5y=55,15x+9y=27
ផ្ទៀងផ្ទាត់។
15x-15x-5y-9y=55-27
ដក 15x+9y=27 ពី 15x-5y=55 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-5y-9y=55-27
បូក 15x ជាមួយ -15x។ ការលុបតួ 15x និង -15x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-14y=55-27
បូក -5y ជាមួយ -9y។
-14y=28
បូក 55 ជាមួយ -27។
y=-2
ចែកជ្រុងទាំងពីនឹង -14។
5x+3\left(-2\right)=9
ជំនួស -2 សម្រាប់ y ក្នុង 5x+3y=9។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
5x-6=9
គុណ 3 ដង -2។
5x=15
បូក 6 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=3
ចែកជ្រុងទាំងពីនឹង 5។
x=3,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}