\left\{ \begin{array} { l } { 3 x - 5 y = - 16 } \\ { 2 x - 2 y = - 4 } \end{array} \right.
ដោះស្រាយសម្រាប់ x, y
x=3
y=5
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
3x-5y=-16,2x-2y=-4
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x-5y=-16
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=5y-16
បូក 5y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(5y-16\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=\frac{5}{3}y-\frac{16}{3}
គុណ \frac{1}{3} ដង 5y-16។
2\left(\frac{5}{3}y-\frac{16}{3}\right)-2y=-4
ជំនួស \frac{5y-16}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 2x-2y=-4។
\frac{10}{3}y-\frac{32}{3}-2y=-4
គុណ 2 ដង \frac{5y-16}{3}។
\frac{4}{3}y-\frac{32}{3}=-4
បូក \frac{10y}{3} ជាមួយ -2y។
\frac{4}{3}y=\frac{20}{3}
បូក \frac{32}{3} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=5
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ \frac{4}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{5}{3}\times 5-\frac{16}{3}
ជំនួស 5 សម្រាប់ y ក្នុង x=\frac{5}{3}y-\frac{16}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{25-16}{3}
គុណ \frac{5}{3} ដង 5។
x=3
បូក -\frac{16}{3} ជាមួយ \frac{25}{3} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=3,y=5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3x-5y=-16,2x-2y=-4
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\-4\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right))\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right))\left(\begin{matrix}-16\\-4\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&-5\\2&-2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right))\left(\begin{matrix}-16\\-4\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right))\left(\begin{matrix}-16\\-4\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-\left(-5\times 2\right)}&-\frac{-5}{3\left(-2\right)-\left(-5\times 2\right)}\\-\frac{2}{3\left(-2\right)-\left(-5\times 2\right)}&\frac{3}{3\left(-2\right)-\left(-5\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-16\\-4\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{5}{4}\\-\frac{1}{2}&\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}-16\\-4\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-16\right)+\frac{5}{4}\left(-4\right)\\-\frac{1}{2}\left(-16\right)+\frac{3}{4}\left(-4\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\5\end{matrix}\right)
ធ្វើនព្វន្ត។
x=3,y=5
ទាញយកធាតុម៉ាទ្រីស x និង y។
3x-5y=-16,2x-2y=-4
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2\times 3x+2\left(-5\right)y=2\left(-16\right),3\times 2x+3\left(-2\right)y=3\left(-4\right)
ដើម្បីធ្វើឲ្យ 3x និង 2x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
6x-10y=-32,6x-6y=-12
ផ្ទៀងផ្ទាត់។
6x-6x-10y+6y=-32+12
ដក 6x-6y=-12 ពី 6x-10y=-32 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-10y+6y=-32+12
បូក 6x ជាមួយ -6x។ ការលុបតួ 6x និង -6x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-4y=-32+12
បូក -10y ជាមួយ 6y។
-4y=-20
បូក -32 ជាមួយ 12។
y=5
ចែកជ្រុងទាំងពីនឹង -4។
2x-2\times 5=-4
ជំនួស 5 សម្រាប់ y ក្នុង 2x-2y=-4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
2x-10=-4
គុណ -2 ដង 5។
2x=6
បូក 10 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=3
ចែកជ្រុងទាំងពីនឹង 2។
x=3,y=5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}