រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

3x+y=3,5x-y=15
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x+y=3
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=-y+3
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(-y+3\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=-\frac{1}{3}y+1
គុណ \frac{1}{3} ដង -y+3។
5\left(-\frac{1}{3}y+1\right)-y=15
ជំនួស -\frac{y}{3}+1 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 5x-y=15។
-\frac{5}{3}y+5-y=15
គុណ 5 ដង -\frac{y}{3}+1។
-\frac{8}{3}y+5=15
បូក -\frac{5y}{3} ជាមួយ -y។
-\frac{8}{3}y=10
ដក 5 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{15}{4}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{8}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{1}{3}\left(-\frac{15}{4}\right)+1
ជំនួស -\frac{15}{4} សម្រាប់ y ក្នុង x=-\frac{1}{3}y+1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{5}{4}+1
គុណ -\frac{1}{3} ដង -\frac{15}{4} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=\frac{9}{4}
បូក 1 ជាមួយ \frac{5}{4}។
x=\frac{9}{4},y=-\frac{15}{4}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3x+y=3,5x-y=15
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\15\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\15\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&1\\5&-1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\15\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\15\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-5}&-\frac{1}{3\left(-1\right)-5}\\-\frac{5}{3\left(-1\right)-5}&\frac{3}{3\left(-1\right)-5}\end{matrix}\right)\left(\begin{matrix}3\\15\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\\frac{5}{8}&-\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}3\\15\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 3+\frac{1}{8}\times 15\\\frac{5}{8}\times 3-\frac{3}{8}\times 15\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{4}\\-\frac{15}{4}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{9}{4},y=-\frac{15}{4}
ទាញយកធាតុម៉ាទ្រីស x និង y។
3x+y=3,5x-y=15
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
5\times 3x+5y=5\times 3,3\times 5x+3\left(-1\right)y=3\times 15
ដើម្បីធ្វើឲ្យ 3x និង 5x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 5 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
15x+5y=15,15x-3y=45
ផ្ទៀងផ្ទាត់។
15x-15x+5y+3y=15-45
ដក 15x-3y=45 ពី 15x+5y=15 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
5y+3y=15-45
បូក 15x ជាមួយ -15x។ ការលុបតួ 15x និង -15x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
8y=15-45
បូក 5y ជាមួយ 3y។
8y=-30
បូក 15 ជាមួយ -45។
y=-\frac{15}{4}
ចែកជ្រុងទាំងពីនឹង 8។
5x-\left(-\frac{15}{4}\right)=15
ជំនួស -\frac{15}{4} សម្រាប់ y ក្នុង 5x-y=15។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
5x=\frac{45}{4}
ដក \frac{15}{4} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{9}{4}
ចែកជ្រុងទាំងពីនឹង 5។
x=\frac{9}{4},y=-\frac{15}{4}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។