រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

3x+5y=4,-3x+4y=11
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x+5y=4
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=-5y+4
ដក 5y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(-5y+4\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=-\frac{5}{3}y+\frac{4}{3}
គុណ \frac{1}{3} ដង -5y+4។
-3\left(-\frac{5}{3}y+\frac{4}{3}\right)+4y=11
ជំនួស \frac{-5y+4}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -3x+4y=11។
5y-4+4y=11
គុណ -3 ដង \frac{-5y+4}{3}។
9y-4=11
បូក 5y ជាមួយ 4y។
9y=15
បូក 4 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{5}{3}
ចែកជ្រុងទាំងពីនឹង 9។
x=-\frac{5}{3}\times \frac{5}{3}+\frac{4}{3}
ជំនួស \frac{5}{3} សម្រាប់ y ក្នុង x=-\frac{5}{3}y+\frac{4}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-\frac{25}{9}+\frac{4}{3}
គុណ -\frac{5}{3} ដង \frac{5}{3} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=-\frac{13}{9}
បូក \frac{4}{3} ជាមួយ -\frac{25}{9} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=-\frac{13}{9},y=\frac{5}{3}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3x+5y=4,-3x+4y=11
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&5\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\11\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&5\\-3&4\end{matrix}\right))\left(\begin{matrix}3&5\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\-3&4\end{matrix}\right))\left(\begin{matrix}4\\11\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&5\\-3&4\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\-3&4\end{matrix}\right))\left(\begin{matrix}4\\11\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\-3&4\end{matrix}\right))\left(\begin{matrix}4\\11\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-5\left(-3\right)}&-\frac{5}{3\times 4-5\left(-3\right)}\\-\frac{-3}{3\times 4-5\left(-3\right)}&\frac{3}{3\times 4-5\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\11\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{27}&-\frac{5}{27}\\\frac{1}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}4\\11\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{27}\times 4-\frac{5}{27}\times 11\\\frac{1}{9}\times 4+\frac{1}{9}\times 11\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{9}\\\frac{5}{3}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-\frac{13}{9},y=\frac{5}{3}
ទាញយកធាតុម៉ាទ្រីស x និង y។
3x+5y=4,-3x+4y=11
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-3\times 3x-3\times 5y=-3\times 4,3\left(-3\right)x+3\times 4y=3\times 11
ដើម្បីធ្វើឲ្យ 3x និង -3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
-9x-15y=-12,-9x+12y=33
ផ្ទៀងផ្ទាត់។
-9x+9x-15y-12y=-12-33
ដក -9x+12y=33 ពី -9x-15y=-12 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-15y-12y=-12-33
បូក -9x ជាមួយ 9x។ ការលុបតួ -9x និង 9x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-27y=-12-33
បូក -15y ជាមួយ -12y។
-27y=-45
បូក -12 ជាមួយ -33។
y=\frac{5}{3}
ចែកជ្រុងទាំងពីនឹង -27។
-3x+4\times \frac{5}{3}=11
ជំនួស \frac{5}{3} សម្រាប់ y ក្នុង -3x+4y=11។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-3x+\frac{20}{3}=11
គុណ 4 ដង \frac{5}{3}។
-3x=\frac{13}{3}
ដក \frac{20}{3} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{13}{9}
ចែកជ្រុងទាំងពីនឹង -3។
x=-\frac{13}{9},y=\frac{5}{3}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។