រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

3x+2y=13,x-2y=-1
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x+2y=13
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=-2y+13
ដក 2y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(-2y+13\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=-\frac{2}{3}y+\frac{13}{3}
គុណ \frac{1}{3} ដង -2y+13។
-\frac{2}{3}y+\frac{13}{3}-2y=-1
ជំនួស \frac{-2y+13}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x-2y=-1។
-\frac{8}{3}y+\frac{13}{3}=-1
បូក -\frac{2y}{3} ជាមួយ -2y។
-\frac{8}{3}y=-\frac{16}{3}
ដក \frac{13}{3} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=2
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{8}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{2}{3}\times 2+\frac{13}{3}
ជំនួស 2 សម្រាប់ y ក្នុង x=-\frac{2}{3}y+\frac{13}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-4+13}{3}
គុណ -\frac{2}{3} ដង 2។
x=3
បូក \frac{13}{3} ជាមួយ -\frac{4}{3} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=3,y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3x+2y=13,x-2y=-1
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&2\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-1\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&2\\1&-2\end{matrix}\right))\left(\begin{matrix}3&2\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&2\\1&-2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-2}&-\frac{2}{3\left(-2\right)-2}\\-\frac{1}{3\left(-2\right)-2}&\frac{3}{3\left(-2\right)-2}\end{matrix}\right)\left(\begin{matrix}13\\-1\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\\frac{1}{8}&-\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}13\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 13+\frac{1}{4}\left(-1\right)\\\frac{1}{8}\times 13-\frac{3}{8}\left(-1\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=3,y=2
ទាញយកធាតុម៉ាទ្រីស x និង y។
3x+2y=13,x-2y=-1
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3x+2y=13,3x+3\left(-2\right)y=3\left(-1\right)
ដើម្បីធ្វើឲ្យ 3x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
3x+2y=13,3x-6y=-3
ផ្ទៀងផ្ទាត់។
3x-3x+2y+6y=13+3
ដក 3x-6y=-3 ពី 3x+2y=13 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
2y+6y=13+3
បូក 3x ជាមួយ -3x។ ការលុបតួ 3x និង -3x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
8y=13+3
បូក 2y ជាមួយ 6y។
8y=16
បូក 13 ជាមួយ 3។
y=2
ចែកជ្រុងទាំងពីនឹង 8។
x-2\times 2=-1
ជំនួស 2 សម្រាប់ y ក្នុង x-2y=-1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x-4=-1
គុណ -2 ដង 2។
x=3
បូក 4 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=3,y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។