\left\{ \begin{array} { l } { 2 x - y = 5 } \\ { - x = 30 - 3 y } \end{array} \right.
ដោះស្រាយសម្រាប់ x, y
x=9
y=13
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
-x+3y=30
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 3y ទៅជ្រុងទាំងពីរ។
2x-y=5,-x+3y=30
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x-y=5
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=y+5
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(y+5\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=\frac{1}{2}y+\frac{5}{2}
គុណ \frac{1}{2} ដង y+5។
-\left(\frac{1}{2}y+\frac{5}{2}\right)+3y=30
ជំនួស \frac{5+y}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -x+3y=30។
-\frac{1}{2}y-\frac{5}{2}+3y=30
គុណ -1 ដង \frac{5+y}{2}។
\frac{5}{2}y-\frac{5}{2}=30
បូក -\frac{y}{2} ជាមួយ 3y។
\frac{5}{2}y=\frac{65}{2}
បូក \frac{5}{2} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=13
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ \frac{5}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{1}{2}\times 13+\frac{5}{2}
ជំនួស 13 សម្រាប់ y ក្នុង x=\frac{1}{2}y+\frac{5}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{13+5}{2}
គុណ \frac{1}{2} ដង 13។
x=9
បូក \frac{5}{2} ជាមួយ \frac{13}{2} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=9,y=13
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-x+3y=30
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 3y ទៅជ្រុងទាំងពីរ។
2x-y=5,-x+3y=30
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&-1\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\30\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&-1\\-1&3\end{matrix}\right))\left(\begin{matrix}2&-1\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-1&3\end{matrix}\right))\left(\begin{matrix}5\\30\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&-1\\-1&3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-1&3\end{matrix}\right))\left(\begin{matrix}5\\30\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-1&3\end{matrix}\right))\left(\begin{matrix}5\\30\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-\left(-1\right)\right)}&-\frac{-1}{2\times 3-\left(-\left(-1\right)\right)}\\-\frac{-1}{2\times 3-\left(-\left(-1\right)\right)}&\frac{2}{2\times 3-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\30\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{1}{5}\\\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}5\\30\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 5+\frac{1}{5}\times 30\\\frac{1}{5}\times 5+\frac{2}{5}\times 30\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\13\end{matrix}\right)
ធ្វើនព្វន្ត។
x=9,y=13
ទាញយកធាតុម៉ាទ្រីស x និង y។
-x+3y=30
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 3y ទៅជ្រុងទាំងពីរ។
2x-y=5,-x+3y=30
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-2x-\left(-y\right)=-5,2\left(-1\right)x+2\times 3y=2\times 30
ដើម្បីធ្វើឲ្យ 2x និង -x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
-2x+y=-5,-2x+6y=60
ផ្ទៀងផ្ទាត់។
-2x+2x+y-6y=-5-60
ដក -2x+6y=60 ពី -2x+y=-5 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
y-6y=-5-60
បូក -2x ជាមួយ 2x។ ការលុបតួ -2x និង 2x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-5y=-5-60
បូក y ជាមួយ -6y។
-5y=-65
បូក -5 ជាមួយ -60។
y=13
ចែកជ្រុងទាំងពីនឹង -5។
-x+3\times 13=30
ជំនួស 13 សម្រាប់ y ក្នុង -x+3y=30។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-x+39=30
គុណ 3 ដង 13។
-x=-9
ដក 39 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=9
ចែកជ្រុងទាំងពីនឹង -1។
x=9,y=13
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}