រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x-y=3,3x+4y=2
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x-y=3
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=y+3
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(y+3\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=\frac{1}{2}y+\frac{3}{2}
គុណ \frac{1}{2} ដង y+3។
3\left(\frac{1}{2}y+\frac{3}{2}\right)+4y=2
ជំនួស \frac{3+y}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x+4y=2។
\frac{3}{2}y+\frac{9}{2}+4y=2
គុណ 3 ដង \frac{3+y}{2}។
\frac{11}{2}y+\frac{9}{2}=2
បូក \frac{3y}{2} ជាមួយ 4y។
\frac{11}{2}y=-\frac{5}{2}
ដក \frac{9}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{5}{11}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{11}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{1}{2}\left(-\frac{5}{11}\right)+\frac{3}{2}
ជំនួស -\frac{5}{11} សម្រាប់ y ក្នុង x=\frac{1}{2}y+\frac{3}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-\frac{5}{22}+\frac{3}{2}
គុណ \frac{1}{2} ដង -\frac{5}{11} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=\frac{14}{11}
បូក \frac{3}{2} ជាមួយ -\frac{5}{22} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=\frac{14}{11},y=-\frac{5}{11}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x-y=3,3x+4y=2
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}2&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&-1\\3&4\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-\left(-3\right)}&-\frac{-1}{2\times 4-\left(-3\right)}\\-\frac{3}{2\times 4-\left(-3\right)}&\frac{2}{2\times 4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}3\\2\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}&\frac{1}{11}\\-\frac{3}{11}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}3\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}\times 3+\frac{1}{11}\times 2\\-\frac{3}{11}\times 3+\frac{2}{11}\times 2\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{14}{11}\\-\frac{5}{11}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{14}{11},y=-\frac{5}{11}
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x-y=3,3x+4y=2
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3\times 2x+3\left(-1\right)y=3\times 3,2\times 3x+2\times 4y=2\times 2
ដើម្បីធ្វើឲ្យ 2x និង 3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
6x-3y=9,6x+8y=4
ផ្ទៀងផ្ទាត់។
6x-6x-3y-8y=9-4
ដក 6x+8y=4 ពី 6x-3y=9 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-3y-8y=9-4
បូក 6x ជាមួយ -6x។ ការលុបតួ 6x និង -6x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-11y=9-4
បូក -3y ជាមួយ -8y។
-11y=5
បូក 9 ជាមួយ -4។
y=-\frac{5}{11}
ចែកជ្រុងទាំងពីនឹង -11។
3x+4\left(-\frac{5}{11}\right)=2
ជំនួស -\frac{5}{11} សម្រាប់ y ក្នុង 3x+4y=2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
3x-\frac{20}{11}=2
គុណ 4 ដង -\frac{5}{11}។
3x=\frac{42}{11}
បូក \frac{20}{11} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{14}{11}
ចែកជ្រុងទាំងពីនឹង 3។
x=\frac{14}{11},y=-\frac{5}{11}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។