\left\{ \begin{array} { l } { 2 x - y = 2 } \\ { 3 x = 2 ( 5 - y ) } \end{array} \right.
ដោះស្រាយសម្រាប់ x, y
x=2
y=2
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
3x=10-2y
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ប្រើលក្ខណៈបំបែកដើម្បីគុណ 2 នឹង 5-y។
3x+2y=10
បន្ថែម 2y ទៅជ្រុងទាំងពីរ។
2x-y=2,3x+2y=10
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x-y=2
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=y+2
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(y+2\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=\frac{1}{2}y+1
គុណ \frac{1}{2} ដង y+2។
3\left(\frac{1}{2}y+1\right)+2y=10
ជំនួស \frac{y}{2}+1 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x+2y=10។
\frac{3}{2}y+3+2y=10
គុណ 3 ដង \frac{y}{2}+1។
\frac{7}{2}y+3=10
បូក \frac{3y}{2} ជាមួយ 2y។
\frac{7}{2}y=7
ដក 3 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=2
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ \frac{7}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{1}{2}\times 2+1
ជំនួស 2 សម្រាប់ y ក្នុង x=\frac{1}{2}y+1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=1+1
គុណ \frac{1}{2} ដង 2។
x=2
បូក 1 ជាមួយ 1។
x=2,y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3x=10-2y
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ប្រើលក្ខណៈបំបែកដើម្បីគុណ 2 នឹង 5-y។
3x+2y=10
បន្ថែម 2y ទៅជ្រុងទាំងពីរ។
2x-y=2,3x+2y=10
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\10\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&-1\\3&2\end{matrix}\right))\left(\begin{matrix}2&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&2\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&-1\\3&2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&2\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&2\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\right)}&-\frac{-1}{2\times 2-\left(-3\right)}\\-\frac{3}{2\times 2-\left(-3\right)}&\frac{2}{2\times 2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}2\\10\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ម៉ាទ្រីសច្រាសគឺជា \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{1}{7}\\-\frac{3}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}2\\10\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 2+\frac{1}{7}\times 10\\-\frac{3}{7}\times 2+\frac{2}{7}\times 10\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=2,y=2
ទាញយកធាតុម៉ាទ្រីស x និង y។
3x=10-2y
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ប្រើលក្ខណៈបំបែកដើម្បីគុណ 2 នឹង 5-y។
3x+2y=10
បន្ថែម 2y ទៅជ្រុងទាំងពីរ។
2x-y=2,3x+2y=10
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3\times 2x+3\left(-1\right)y=3\times 2,2\times 3x+2\times 2y=2\times 10
ដើម្បីធ្វើឲ្យ 2x និង 3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
6x-3y=6,6x+4y=20
ផ្ទៀងផ្ទាត់។
6x-6x-3y-4y=6-20
ដក 6x+4y=20 ពី 6x-3y=6 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-3y-4y=6-20
បូក 6x ជាមួយ -6x។ ការលុបតួ 6x និង -6x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-7y=6-20
បូក -3y ជាមួយ -4y។
-7y=-14
បូក 6 ជាមួយ -20។
y=2
ចែកជ្រុងទាំងពីនឹង -7។
3x+2\times 2=10
ជំនួស 2 សម្រាប់ y ក្នុង 3x+2y=10។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
3x+4=10
គុណ 2 ដង 2។
3x=6
ដក 4 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=2
ចែកជ្រុងទាំងពីនឹង 3។
x=2,y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}