រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x+y-6=0,2x+2y=0
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+y-6=0
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x+y=6
បូក 6 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
2x=-y+6
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-y+6\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{1}{2}y+3
គុណ \frac{1}{2} ដង -y+6។
2\left(-\frac{1}{2}y+3\right)+2y=0
ជំនួស -\frac{y}{2}+3 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 2x+2y=0។
-y+6+2y=0
គុណ 2 ដង -\frac{y}{2}+3។
y+6=0
បូក -y ជាមួយ 2y។
y=-6
ដក 6 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{2}\left(-6\right)+3
ជំនួស -6 សម្រាប់ y ក្នុង x=-\frac{1}{2}y+3។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=3+3
គុណ -\frac{1}{2} ដង -6។
x=6
បូក 3 ជាមួយ 3។
x=6,y=-6
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x+y-6=0,2x+2y=0
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\0\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&1\\2&2\end{matrix}\right))\left(\begin{matrix}2&1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&2\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&1\\2&2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&2\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&2\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-2}&-\frac{1}{2\times 2-2}\\-\frac{2}{2\times 2-2}&\frac{2}{2\times 2-2}\end{matrix}\right)\left(\begin{matrix}6\\0\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-\frac{1}{2}\\-1&1\end{matrix}\right)\left(\begin{matrix}6\\0\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-6\end{matrix}\right)
គុណម៉ាទ្រីស។
x=6,y=-6
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x+y-6=0,2x+2y=0
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2x-2x+y-2y-6=0
ដក 2x+2y=0 ពី 2x+y-6=0 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
y-2y-6=0
បូក 2x ជាមួយ -2x។ ការលុបតួ 2x និង -2x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-y-6=0
បូក y ជាមួយ -2y។
-y=6
បូក 6 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-6
ចែកជ្រុងទាំងពីនឹង -1។
2x+2\left(-6\right)=0
ជំនួស -6 សម្រាប់ y ក្នុង 2x+2y=0។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
2x-12=0
គុណ 2 ដង -6។
2x=12
បូក 12 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=6
ចែកជ្រុងទាំងពីនឹង 2។
x=6,y=-6
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។