រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x-y=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក y ពីជ្រុងទាំងពីរ។
2x+y=60,x-y=0
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+y=60
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=-y+60
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-y+60\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{1}{2}y+30
គុណ \frac{1}{2} ដង -y+60។
-\frac{1}{2}y+30-y=0
ជំនួស -\frac{y}{2}+30 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x-y=0។
-\frac{3}{2}y+30=0
បូក -\frac{y}{2} ជាមួយ -y។
-\frac{3}{2}y=-30
ដក 30 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=20
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{3}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{1}{2}\times 20+30
ជំនួស 20 សម្រាប់ y ក្នុង x=-\frac{1}{2}y+30។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-10+30
គុណ -\frac{1}{2} ដង 20។
x=20
បូក 30 ជាមួយ -10។
x=20,y=20
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x-y=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក y ពីជ្រុងទាំងពីរ។
2x+y=60,x-y=0
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\0\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}2&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}60\\0\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&1\\1&-1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}60\\0\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}60\\0\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-1}&-\frac{1}{2\left(-1\right)-1}\\-\frac{1}{2\left(-1\right)-1}&\frac{2}{2\left(-1\right)-1}\end{matrix}\right)\left(\begin{matrix}60\\0\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}60\\0\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 60\\\frac{1}{3}\times 60\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\20\end{matrix}\right)
ធ្វើនព្វន្ត។
x=20,y=20
ទាញយកធាតុម៉ាទ្រីស x និង y។
x-y=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក y ពីជ្រុងទាំងពីរ។
2x+y=60,x-y=0
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2x+y=60,2x+2\left(-1\right)y=0
ដើម្បីធ្វើឲ្យ 2x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
2x+y=60,2x-2y=0
ផ្ទៀងផ្ទាត់។
2x-2x+y+2y=60
ដក 2x-2y=0 ពី 2x+y=60 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
y+2y=60
បូក 2x ជាមួយ -2x។ ការលុបតួ 2x និង -2x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
3y=60
បូក y ជាមួយ 2y។
y=20
ចែកជ្រុងទាំងពីនឹង 3។
x-20=0
ជំនួស 20 សម្រាប់ y ក្នុង x-y=0។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=20
បូក 20 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=20,y=20
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។