រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x+y=11,5x+3y=30
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+y=11
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=-y+11
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-y+11\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{1}{2}y+\frac{11}{2}
គុណ \frac{1}{2} ដង -y+11។
5\left(-\frac{1}{2}y+\frac{11}{2}\right)+3y=30
ជំនួស \frac{-y+11}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 5x+3y=30។
-\frac{5}{2}y+\frac{55}{2}+3y=30
គុណ 5 ដង \frac{-y+11}{2}។
\frac{1}{2}y+\frac{55}{2}=30
បូក -\frac{5y}{2} ជាមួយ 3y។
\frac{1}{2}y=\frac{5}{2}
ដក \frac{55}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=5
គុណជ្រុងទាំងពីរនឹង 2។
x=-\frac{1}{2}\times 5+\frac{11}{2}
ជំនួស 5 សម្រាប់ y ក្នុង x=-\frac{1}{2}y+\frac{11}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-5+11}{2}
គុណ -\frac{1}{2} ដង 5។
x=3
បូក \frac{11}{2} ជាមួយ -\frac{5}{2} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=3,y=5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x+y=11,5x+3y=30
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&1\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\30\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&1\\5&3\end{matrix}\right))\left(\begin{matrix}2&1\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\5&3\end{matrix}\right))\left(\begin{matrix}11\\30\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&1\\5&3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\5&3\end{matrix}\right))\left(\begin{matrix}11\\30\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\5&3\end{matrix}\right))\left(\begin{matrix}11\\30\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-5}&-\frac{1}{2\times 3-5}\\-\frac{5}{2\times 3-5}&\frac{2}{2\times 3-5}\end{matrix}\right)\left(\begin{matrix}11\\30\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-1\\-5&2\end{matrix}\right)\left(\begin{matrix}11\\30\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 11-30\\-5\times 11+2\times 30\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\5\end{matrix}\right)
ធ្វើនព្វន្ត។
x=3,y=5
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x+y=11,5x+3y=30
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
5\times 2x+5y=5\times 11,2\times 5x+2\times 3y=2\times 30
ដើម្បីធ្វើឲ្យ 2x និង 5x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 5 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
10x+5y=55,10x+6y=60
ផ្ទៀងផ្ទាត់។
10x-10x+5y-6y=55-60
ដក 10x+6y=60 ពី 10x+5y=55 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
5y-6y=55-60
បូក 10x ជាមួយ -10x។ ការលុបតួ 10x និង -10x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-y=55-60
បូក 5y ជាមួយ -6y។
-y=-5
បូក 55 ជាមួយ -60។
y=5
ចែកជ្រុងទាំងពីនឹង -1។
5x+3\times 5=30
ជំនួស 5 សម្រាប់ y ក្នុង 5x+3y=30។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
5x+15=30
គុណ 3 ដង 5។
5x=15
ដក 15 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=3
ចែកជ្រុងទាំងពីនឹង 5។
x=3,y=5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។