រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x+4y=1,2x-6y=-4
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+4y=1
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=-4y+1
ដក 4y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-4y+1\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-2y+\frac{1}{2}
គុណ \frac{1}{2} ដង -4y+1។
2\left(-2y+\frac{1}{2}\right)-6y=-4
ជំនួស -2y+\frac{1}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 2x-6y=-4។
-4y+1-6y=-4
គុណ 2 ដង -2y+\frac{1}{2}។
-10y+1=-4
បូក -4y ជាមួយ -6y។
-10y=-5
ដក 1 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{1}{2}
ចែកជ្រុងទាំងពីនឹង -10។
x=-2\times \frac{1}{2}+\frac{1}{2}
ជំនួស \frac{1}{2} សម្រាប់ y ក្នុង x=-2y+\frac{1}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-1+\frac{1}{2}
គុណ -2 ដង \frac{1}{2}។
x=-\frac{1}{2}
បូក \frac{1}{2} ជាមួយ -1។
x=-\frac{1}{2},y=\frac{1}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x+4y=1,2x-6y=-4
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&4\\2&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&4\\2&-6\end{matrix}\right))\left(\begin{matrix}2&4\\2&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\2&-6\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&4\\2&-6\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\2&-6\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\2&-6\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{2\left(-6\right)-4\times 2}&-\frac{4}{2\left(-6\right)-4\times 2}\\-\frac{2}{2\left(-6\right)-4\times 2}&\frac{2}{2\left(-6\right)-4\times 2}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&\frac{1}{5}\\\frac{1}{10}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}+\frac{1}{5}\left(-4\right)\\\frac{1}{10}-\frac{1}{10}\left(-4\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\\frac{1}{2}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-\frac{1}{2},y=\frac{1}{2}
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x+4y=1,2x-6y=-4
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2x-2x+4y+6y=1+4
ដក 2x-6y=-4 ពី 2x+4y=1 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
4y+6y=1+4
បូក 2x ជាមួយ -2x។ ការលុបតួ 2x និង -2x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
10y=1+4
បូក 4y ជាមួយ 6y។
10y=5
បូក 1 ជាមួយ 4។
y=\frac{1}{2}
ចែកជ្រុងទាំងពីនឹង 10។
2x-6\times \frac{1}{2}=-4
ជំនួស \frac{1}{2} សម្រាប់ y ក្នុង 2x-6y=-4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
2x-3=-4
គុណ -6 ដង \frac{1}{2}។
2x=-1
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{2}
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{1}{2},y=\frac{1}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។