រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x+3y-4=0,x+3y=5
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+3y-4=0
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x+3y=4
បូក 4 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
2x=-3y+4
ដក 3y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-3y+4\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{3}{2}y+2
គុណ \frac{1}{2} ដង -3y+4។
-\frac{3}{2}y+2+3y=5
ជំនួស -\frac{3y}{2}+2 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x+3y=5។
\frac{3}{2}y+2=5
បូក -\frac{3y}{2} ជាមួយ 3y។
\frac{3}{2}y=3
ដក 2 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=2
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{3}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{3}{2}\times 2+2
ជំនួស 2 សម្រាប់ y ក្នុង x=-\frac{3}{2}y+2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-3+2
គុណ -\frac{3}{2} ដង 2។
x=-1
បូក 2 ជាមួយ -3។
x=-1,y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x+3y-4=0,x+3y=5
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\5\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}2&3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&3\\1&3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3}&-\frac{3}{2\times 3-3}\\-\frac{1}{2\times 3-3}&\frac{2}{2\times 3-3}\end{matrix}\right)\left(\begin{matrix}4\\5\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}4\\5\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4-5\\-\frac{1}{3}\times 4+\frac{2}{3}\times 5\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-1,y=2
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x+3y-4=0,x+3y=5
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2x-x+3y-3y-4=-5
ដក x+3y=5 ពី 2x+3y-4=0 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
2x-x-4=-5
បូក 3y ជាមួយ -3y។ ការលុបតួ 3y និង -3y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
x-4=-5
បូក 2x ជាមួយ -x។
x=-1
បូក 4 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
-1+3y=5
ជំនួស -1 សម្រាប់ x ក្នុង x+3y=5។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
3y=6
បូក 1 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-1,y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។