\left\{ \begin{array} { l } { 12 = a + b } \\ { 2 = 6 a + b } \end{array} \right.
ដោះស្រាយសម្រាប់ a, b
a=-2
b=14
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
a+b=12
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
6a+b=2
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
a+b=12,6a+b=2
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
a+b=12
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ a ដោយការញែក a នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
a=-b+12
ដក b ពីជ្រុងទាំងពីរនៃសមីការរ។
6\left(-b+12\right)+b=2
ជំនួស -b+12 សម្រាប់ a នៅក្នុងសមីការរផ្សេងទៀត 6a+b=2។
-6b+72+b=2
គុណ 6 ដង -b+12។
-5b+72=2
បូក -6b ជាមួយ b។
-5b=-70
ដក 72 ពីជ្រុងទាំងពីរនៃសមីការរ។
b=14
ចែកជ្រុងទាំងពីនឹង -5។
a=-14+12
ជំនួស 14 សម្រាប់ b ក្នុង a=-b+12។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ a ដោយផ្ទាល់។
a=-2
បូក 12 ជាមួយ -14។
a=-2,b=14
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
a+b=12
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
6a+b=2
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
a+b=12,6a+b=2
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&1\\6&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}12\\2\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&1\\6&1\end{matrix}\right))\left(\begin{matrix}1&1\\6&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&1\end{matrix}\right))\left(\begin{matrix}12\\2\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&1\\6&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&1\end{matrix}\right))\left(\begin{matrix}12\\2\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&1\end{matrix}\right))\left(\begin{matrix}12\\2\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-6}&-\frac{1}{1-6}\\-\frac{6}{1-6}&\frac{1}{1-6}\end{matrix}\right)\left(\begin{matrix}12\\2\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{1}{5}\\\frac{6}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}12\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 12+\frac{1}{5}\times 2\\\frac{6}{5}\times 12-\frac{1}{5}\times 2\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-2\\14\end{matrix}\right)
ធ្វើនព្វន្ត។
a=-2,b=14
ទាញយកធាតុម៉ាទ្រីស a និង b។
a+b=12
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
6a+b=2
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
a+b=12,6a+b=2
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
a-6a+b-b=12-2
ដក 6a+b=2 ពី a+b=12 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
a-6a=12-2
បូក b ជាមួយ -b។ ការលុបតួ b និង -b បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-5a=12-2
បូក a ជាមួយ -6a។
-5a=10
បូក 12 ជាមួយ -2។
a=-2
ចែកជ្រុងទាំងពីនឹង -5។
6\left(-2\right)+b=2
ជំនួស -2 សម្រាប់ a ក្នុង 6a+b=2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ b ដោយផ្ទាល់។
-12+b=2
គុណ 6 ដង -2។
b=14
បូក 12 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
a=-2,b=14
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}