រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

-3x+5y=1,4x-y=10
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-3x+5y=1
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-3x=-5y+1
ដក 5y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{3}\left(-5y+1\right)
ចែកជ្រុងទាំងពីនឹង -3។
x=\frac{5}{3}y-\frac{1}{3}
គុណ -\frac{1}{3} ដង -5y+1។
4\left(\frac{5}{3}y-\frac{1}{3}\right)-y=10
ជំនួស \frac{5y-1}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 4x-y=10។
\frac{20}{3}y-\frac{4}{3}-y=10
គុណ 4 ដង \frac{5y-1}{3}។
\frac{17}{3}y-\frac{4}{3}=10
បូក \frac{20y}{3} ជាមួយ -y។
\frac{17}{3}y=\frac{34}{3}
បូក \frac{4}{3} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=2
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{17}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{5}{3}\times 2-\frac{1}{3}
ជំនួស 2 សម្រាប់ y ក្នុង x=\frac{5}{3}y-\frac{1}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{10-1}{3}
គុណ \frac{5}{3} ដង 2។
x=3
បូក -\frac{1}{3} ជាមួយ \frac{10}{3} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=3,y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-3x+5y=1,4x-y=10
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\10\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-3&5\\4&-1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-3\left(-1\right)-5\times 4}&-\frac{5}{-3\left(-1\right)-5\times 4}\\-\frac{4}{-3\left(-1\right)-5\times 4}&-\frac{3}{-3\left(-1\right)-5\times 4}\end{matrix}\right)\left(\begin{matrix}1\\10\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&\frac{5}{17}\\\frac{4}{17}&\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}1\\10\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}+\frac{5}{17}\times 10\\\frac{4}{17}+\frac{3}{17}\times 10\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=3,y=2
ទាញយកធាតុម៉ាទ្រីស x និង y។
-3x+5y=1,4x-y=10
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
4\left(-3\right)x+4\times 5y=4,-3\times 4x-3\left(-1\right)y=-3\times 10
ដើម្បីធ្វើឲ្យ -3x និង 4x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 4 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -3។
-12x+20y=4,-12x+3y=-30
ផ្ទៀងផ្ទាត់។
-12x+12x+20y-3y=4+30
ដក -12x+3y=-30 ពី -12x+20y=4 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
20y-3y=4+30
បូក -12x ជាមួយ 12x។ ការលុបតួ -12x និង 12x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
17y=4+30
បូក 20y ជាមួយ -3y។
17y=34
បូក 4 ជាមួយ 30។
y=2
ចែកជ្រុងទាំងពីនឹង 17។
4x-2=10
ជំនួស 2 សម្រាប់ y ក្នុង 4x-y=10។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
4x=12
បូក 2 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=3
ចែកជ្រុងទាំងពីនឹង 4។
x=3,y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។