\left\{ \begin{array} { l } { - 3 x + 5 y = - 16 } \\ { - 5 x - 4 y = - 2 } \end{array} \right.
ដោះស្រាយសម្រាប់ x, y
x=2
y=-2
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
-3x+5y=-16,-5x-4y=-2
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-3x+5y=-16
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-3x=-5y-16
ដក 5y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{3}\left(-5y-16\right)
ចែកជ្រុងទាំងពីនឹង -3។
x=\frac{5}{3}y+\frac{16}{3}
គុណ -\frac{1}{3} ដង -5y-16។
-5\left(\frac{5}{3}y+\frac{16}{3}\right)-4y=-2
ជំនួស \frac{5y+16}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -5x-4y=-2។
-\frac{25}{3}y-\frac{80}{3}-4y=-2
គុណ -5 ដង \frac{5y+16}{3}។
-\frac{37}{3}y-\frac{80}{3}=-2
បូក -\frac{25y}{3} ជាមួយ -4y។
-\frac{37}{3}y=\frac{74}{3}
បូក \frac{80}{3} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-2
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{37}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{5}{3}\left(-2\right)+\frac{16}{3}
ជំនួស -2 សម្រាប់ y ក្នុង x=\frac{5}{3}y+\frac{16}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-10+16}{3}
គុណ \frac{5}{3} ដង -2។
x=2
បូក \frac{16}{3} ជាមួយ -\frac{10}{3} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=2,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-3x+5y=-16,-5x-4y=-2
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-3&5\\-5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\-2\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-3&5\\-5&-4\end{matrix}\right))\left(\begin{matrix}-3&5\\-5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\-5&-4\end{matrix}\right))\left(\begin{matrix}-16\\-2\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-3&5\\-5&-4\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\-5&-4\end{matrix}\right))\left(\begin{matrix}-16\\-2\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\-5&-4\end{matrix}\right))\left(\begin{matrix}-16\\-2\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-3\left(-4\right)-5\left(-5\right)}&-\frac{5}{-3\left(-4\right)-5\left(-5\right)}\\-\frac{-5}{-3\left(-4\right)-5\left(-5\right)}&-\frac{3}{-3\left(-4\right)-5\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}-16\\-2\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{37}&-\frac{5}{37}\\\frac{5}{37}&-\frac{3}{37}\end{matrix}\right)\left(\begin{matrix}-16\\-2\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{37}\left(-16\right)-\frac{5}{37}\left(-2\right)\\\frac{5}{37}\left(-16\right)-\frac{3}{37}\left(-2\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=2,y=-2
ទាញយកធាតុម៉ាទ្រីស x និង y។
-3x+5y=-16,-5x-4y=-2
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-5\left(-3\right)x-5\times 5y=-5\left(-16\right),-3\left(-5\right)x-3\left(-4\right)y=-3\left(-2\right)
ដើម្បីធ្វើឲ្យ -3x និង -5x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -5 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -3។
15x-25y=80,15x+12y=6
ផ្ទៀងផ្ទាត់។
15x-15x-25y-12y=80-6
ដក 15x+12y=6 ពី 15x-25y=80 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-25y-12y=80-6
បូក 15x ជាមួយ -15x។ ការលុបតួ 15x និង -15x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-37y=80-6
បូក -25y ជាមួយ -12y។
-37y=74
បូក 80 ជាមួយ -6។
y=-2
ចែកជ្រុងទាំងពីនឹង -37។
-5x-4\left(-2\right)=-2
ជំនួស -2 សម្រាប់ y ក្នុង -5x-4y=-2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-5x+8=-2
គុណ -4 ដង -2។
-5x=-10
ដក 8 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=2
ចែកជ្រុងទាំងពីនឹង -5។
x=2,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}