រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

-2x+3y=9,7x-9y=-31
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-2x+3y=9
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-2x=-3y+9
ដក 3y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{2}\left(-3y+9\right)
ចែកជ្រុងទាំងពីនឹង -2។
x=\frac{3}{2}y-\frac{9}{2}
គុណ -\frac{1}{2} ដង -3y+9។
7\left(\frac{3}{2}y-\frac{9}{2}\right)-9y=-31
ជំនួស \frac{-9+3y}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 7x-9y=-31។
\frac{21}{2}y-\frac{63}{2}-9y=-31
គុណ 7 ដង \frac{-9+3y}{2}។
\frac{3}{2}y-\frac{63}{2}=-31
បូក \frac{21y}{2} ជាមួយ -9y។
\frac{3}{2}y=\frac{1}{2}
បូក \frac{63}{2} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{1}{3}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{3}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{3}{2}\times \frac{1}{3}-\frac{9}{2}
ជំនួស \frac{1}{3} សម្រាប់ y ក្នុង x=\frac{3}{2}y-\frac{9}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{1-9}{2}
គុណ \frac{3}{2} ដង \frac{1}{3} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=-4
បូក -\frac{9}{2} ជាមួយ \frac{1}{2} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=-4,y=\frac{1}{3}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-2x+3y=9,7x-9y=-31
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-31\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right))\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right))\left(\begin{matrix}9\\-31\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-2&3\\7&-9\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right))\left(\begin{matrix}9\\-31\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right))\left(\begin{matrix}9\\-31\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-2\left(-9\right)-3\times 7}&-\frac{3}{-2\left(-9\right)-3\times 7}\\-\frac{7}{-2\left(-9\right)-3\times 7}&-\frac{2}{-2\left(-9\right)-3\times 7}\end{matrix}\right)\left(\begin{matrix}9\\-31\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&1\\\frac{7}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}9\\-31\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 9-31\\\frac{7}{3}\times 9+\frac{2}{3}\left(-31\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\\frac{1}{3}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-4,y=\frac{1}{3}
ទាញយកធាតុម៉ាទ្រីស x និង y។
-2x+3y=9,7x-9y=-31
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
7\left(-2\right)x+7\times 3y=7\times 9,-2\times 7x-2\left(-9\right)y=-2\left(-31\right)
ដើម្បីធ្វើឲ្យ -2x និង 7x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 7 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -2។
-14x+21y=63,-14x+18y=62
ផ្ទៀងផ្ទាត់។
-14x+14x+21y-18y=63-62
ដក -14x+18y=62 ពី -14x+21y=63 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
21y-18y=63-62
បូក -14x ជាមួយ 14x។ ការលុបតួ -14x និង 14x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
3y=63-62
បូក 21y ជាមួយ -18y។
3y=1
បូក 63 ជាមួយ -62។
y=\frac{1}{3}
ចែកជ្រុងទាំងពីនឹង 3។
7x-9\times \frac{1}{3}=-31
ជំនួស \frac{1}{3} សម្រាប់ y ក្នុង 7x-9y=-31។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
7x-3=-31
គុណ -9 ដង \frac{1}{3}។
7x=-28
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-4
ចែកជ្រុងទាំងពីនឹង 7។
x=-4,y=\frac{1}{3}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។