\left\{ \begin{array} { l } { \frac { x } { 6 } - y = - 1 } \\ { 3 x - 2 y = 6 } \end{array} \right.
ដោះស្រាយសម្រាប់ x, y
x=3
y = \frac{3}{2} = 1\frac{1}{2} = 1.5
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
\frac{1}{6}x-y=-1,3x-2y=6
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
\frac{1}{6}x-y=-1
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
\frac{1}{6}x=y-1
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=6\left(y-1\right)
គុណជ្រុងទាំងពីរនឹង 6។
x=6y-6
គុណ 6 ដង y-1។
3\left(6y-6\right)-2y=6
ជំនួស -6+6y សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x-2y=6។
18y-18-2y=6
គុណ 3 ដង -6+6y។
16y-18=6
បូក 18y ជាមួយ -2y។
16y=24
បូក 18 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{3}{2}
ចែកជ្រុងទាំងពីនឹង 16។
x=6\times \frac{3}{2}-6
ជំនួស \frac{3}{2} សម្រាប់ y ក្នុង x=6y-6។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=9-6
គុណ 6 ដង \frac{3}{2}។
x=3
បូក -6 ជាមួយ 9។
x=3,y=\frac{3}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
\frac{1}{6}x-y=-1,3x-2y=6
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\6\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}-1\\6\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}-1\\6\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}-1\\6\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{\frac{1}{6}\left(-2\right)-\left(-3\right)}&-\frac{-1}{\frac{1}{6}\left(-2\right)-\left(-3\right)}\\-\frac{3}{\frac{1}{6}\left(-2\right)-\left(-3\right)}&\frac{\frac{1}{6}}{\frac{1}{6}\left(-2\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-1\\6\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}&\frac{3}{8}\\-\frac{9}{8}&\frac{1}{16}\end{matrix}\right)\left(\begin{matrix}-1\\6\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}\left(-1\right)+\frac{3}{8}\times 6\\-\frac{9}{8}\left(-1\right)+\frac{1}{16}\times 6\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\\frac{3}{2}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=3,y=\frac{3}{2}
ទាញយកធាតុម៉ាទ្រីស x និង y។
\frac{1}{6}x-y=-1,3x-2y=6
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3\times \frac{1}{6}x+3\left(-1\right)y=3\left(-1\right),\frac{1}{6}\times 3x+\frac{1}{6}\left(-2\right)y=\frac{1}{6}\times 6
ដើម្បីធ្វើឲ្យ \frac{x}{6} និង 3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ \frac{1}{6}។
\frac{1}{2}x-3y=-3,\frac{1}{2}x-\frac{1}{3}y=1
ផ្ទៀងផ្ទាត់។
\frac{1}{2}x-\frac{1}{2}x-3y+\frac{1}{3}y=-3-1
ដក \frac{1}{2}x-\frac{1}{3}y=1 ពី \frac{1}{2}x-3y=-3 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-3y+\frac{1}{3}y=-3-1
បូក \frac{x}{2} ជាមួយ -\frac{x}{2}។ ការលុបតួ \frac{x}{2} និង -\frac{x}{2} បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-\frac{8}{3}y=-3-1
បូក -3y ជាមួយ \frac{y}{3}។
-\frac{8}{3}y=-4
បូក -3 ជាមួយ -1។
y=\frac{3}{2}
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{8}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
3x-2\times \frac{3}{2}=6
ជំនួស \frac{3}{2} សម្រាប់ y ក្នុង 3x-2y=6។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
3x-3=6
គុណ -2 ដង \frac{3}{2}។
3x=9
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=3
ចែកជ្រុងទាំងពីនឹង 3។
x=3,y=\frac{3}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}