\left\{ \begin{array} { l } { \frac { x + y } { 8 } - \frac { y - x } { 2 } = 1 } \\ { \frac { 3 x - 1 } { 6 } + \frac { y + 3 } { 3 } = \frac { 25 } { 6 } } \end{array} \right.
ដោះស្រាយសម្រាប់ x, y
x=4
y=4
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
x+y-4\left(y-x\right)=8
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង 8 ផលគុណរួមតូចបំផុតនៃ 8,2។
x+y-4y+4x=8
ប្រើលក្ខណៈបំបែកដើម្បីគុណ -4 នឹង y-x។
x-3y+4x=8
បន្សំ y និង -4y ដើម្បីបាន -3y។
5x-3y=8
បន្សំ x និង 4x ដើម្បីបាន 5x។
3x-1+2\left(y+3\right)=25
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង 6 ផលគុណរួមតូចបំផុតនៃ 6,3។
3x-1+2y+6=25
ប្រើលក្ខណៈបំបែកដើម្បីគុណ 2 នឹង y+3។
3x+5+2y=25
បូក -1 និង 6 ដើម្បីបាន 5។
3x+2y=25-5
ដក 5 ពីជ្រុងទាំងពីរ។
3x+2y=20
ដក 5 ពី 25 ដើម្បីបាន 20។
5x-3y=8,3x+2y=20
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
5x-3y=8
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
5x=3y+8
បូក 3y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{5}\left(3y+8\right)
ចែកជ្រុងទាំងពីនឹង 5។
x=\frac{3}{5}y+\frac{8}{5}
គុណ \frac{1}{5} ដង 3y+8។
3\left(\frac{3}{5}y+\frac{8}{5}\right)+2y=20
ជំនួស \frac{3y+8}{5} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x+2y=20។
\frac{9}{5}y+\frac{24}{5}+2y=20
គុណ 3 ដង \frac{3y+8}{5}។
\frac{19}{5}y+\frac{24}{5}=20
បូក \frac{9y}{5} ជាមួយ 2y។
\frac{19}{5}y=\frac{76}{5}
ដក \frac{24}{5} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=4
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ \frac{19}{5} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{3}{5}\times 4+\frac{8}{5}
ជំនួស 4 សម្រាប់ y ក្នុង x=\frac{3}{5}y+\frac{8}{5}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{12+8}{5}
គុណ \frac{3}{5} ដង 4។
x=4
បូក \frac{8}{5} ជាមួយ \frac{12}{5} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=4,y=4
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x+y-4\left(y-x\right)=8
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង 8 ផលគុណរួមតូចបំផុតនៃ 8,2។
x+y-4y+4x=8
ប្រើលក្ខណៈបំបែកដើម្បីគុណ -4 នឹង y-x។
x-3y+4x=8
បន្សំ y និង -4y ដើម្បីបាន -3y។
5x-3y=8
បន្សំ x និង 4x ដើម្បីបាន 5x។
3x-1+2\left(y+3\right)=25
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង 6 ផលគុណរួមតូចបំផុតនៃ 6,3។
3x-1+2y+6=25
ប្រើលក្ខណៈបំបែកដើម្បីគុណ 2 នឹង y+3។
3x+5+2y=25
បូក -1 និង 6 ដើម្បីបាន 5។
3x+2y=25-5
ដក 5 ពីជ្រុងទាំងពីរ។
3x+2y=20
ដក 5 ពី 25 ដើម្បីបាន 20។
5x-3y=8,3x+2y=20
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}5&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\20\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}5&-3\\3&2\end{matrix}\right))\left(\begin{matrix}5&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\3&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}5&-3\\3&2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\3&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\3&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-3\times 3\right)}&-\frac{-3}{5\times 2-\left(-3\times 3\right)}\\-\frac{3}{5\times 2-\left(-3\times 3\right)}&\frac{5}{5\times 2-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}8\\20\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}&\frac{3}{19}\\-\frac{3}{19}&\frac{5}{19}\end{matrix}\right)\left(\begin{matrix}8\\20\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}\times 8+\frac{3}{19}\times 20\\-\frac{3}{19}\times 8+\frac{5}{19}\times 20\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\4\end{matrix}\right)
ធ្វើនព្វន្ត។
x=4,y=4
ទាញយកធាតុម៉ាទ្រីស x និង y។
x+y-4\left(y-x\right)=8
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង 8 ផលគុណរួមតូចបំផុតនៃ 8,2។
x+y-4y+4x=8
ប្រើលក្ខណៈបំបែកដើម្បីគុណ -4 នឹង y-x។
x-3y+4x=8
បន្សំ y និង -4y ដើម្បីបាន -3y។
5x-3y=8
បន្សំ x និង 4x ដើម្បីបាន 5x។
3x-1+2\left(y+3\right)=25
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង 6 ផលគុណរួមតូចបំផុតនៃ 6,3។
3x-1+2y+6=25
ប្រើលក្ខណៈបំបែកដើម្បីគុណ 2 នឹង y+3។
3x+5+2y=25
បូក -1 និង 6 ដើម្បីបាន 5។
3x+2y=25-5
ដក 5 ពីជ្រុងទាំងពីរ។
3x+2y=20
ដក 5 ពី 25 ដើម្បីបាន 20។
5x-3y=8,3x+2y=20
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3\times 5x+3\left(-3\right)y=3\times 8,5\times 3x+5\times 2y=5\times 20
ដើម្បីធ្វើឲ្យ 5x និង 3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 5។
15x-9y=24,15x+10y=100
ផ្ទៀងផ្ទាត់។
15x-15x-9y-10y=24-100
ដក 15x+10y=100 ពី 15x-9y=24 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-9y-10y=24-100
បូក 15x ជាមួយ -15x។ ការលុបតួ 15x និង -15x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-19y=24-100
បូក -9y ជាមួយ -10y។
-19y=-76
បូក 24 ជាមួយ -100។
y=4
ចែកជ្រុងទាំងពីនឹង -19។
3x+2\times 4=20
ជំនួស 4 សម្រាប់ y ក្នុង 3x+2y=20។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
3x+8=20
គុណ 2 ដង 4។
3x=12
ដក 8 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=4
ចែកជ្រុងទាំងពីនឹង 3។
x=4,y=4
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}