រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x-5+3y-4=-1
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ 3។
2x-9+3y=-1
ដក​ 4 ពី -5 ដើម្បីបាន -9។
2x+3y=-1+9
បន្ថែម 9 ទៅជ្រុងទាំងពីរ។
2x+3y=8
បូក -1 និង 9 ដើម្បីបាន 8។
y-x=5
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក x ពីជ្រុងទាំងពីរ។
2x+3y=8,-x+y=5
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+3y=8
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=-3y+8
ដក 3y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-3y+8\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{3}{2}y+4
គុណ \frac{1}{2} ដង -3y+8។
-\left(-\frac{3}{2}y+4\right)+y=5
ជំនួស -\frac{3y}{2}+4 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -x+y=5។
\frac{3}{2}y-4+y=5
គុណ -1 ដង -\frac{3y}{2}+4។
\frac{5}{2}y-4=5
បូក \frac{3y}{2} ជាមួយ y។
\frac{5}{2}y=9
បូក 4 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{18}{5}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{5}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{3}{2}\times \frac{18}{5}+4
ជំនួស \frac{18}{5} សម្រាប់ y ក្នុង x=-\frac{3}{2}y+4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-\frac{27}{5}+4
គុណ -\frac{3}{2} ដង \frac{18}{5} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=-\frac{7}{5}
បូក 4 ជាមួយ -\frac{27}{5}។
x=-\frac{7}{5},y=\frac{18}{5}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x-5+3y-4=-1
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ 3។
2x-9+3y=-1
ដក​ 4 ពី -5 ដើម្បីបាន -9។
2x+3y=-1+9
បន្ថែម 9 ទៅជ្រុងទាំងពីរ។
2x+3y=8
បូក -1 និង 9 ដើម្បីបាន 8។
y-x=5
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក x ពីជ្រុងទាំងពីរ។
2x+3y=8,-x+y=5
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&3\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\5\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&3\\-1&1\end{matrix}\right))\left(\begin{matrix}2&3\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-1&1\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&3\\-1&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-1&1\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-1&1\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3\left(-1\right)}&-\frac{3}{2-3\left(-1\right)}\\-\frac{-1}{2-3\left(-1\right)}&\frac{2}{2-3\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}8\\5\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&-\frac{3}{5}\\\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}8\\5\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 8-\frac{3}{5}\times 5\\\frac{1}{5}\times 8+\frac{2}{5}\times 5\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{5}\\\frac{18}{5}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-\frac{7}{5},y=\frac{18}{5}
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x-5+3y-4=-1
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ 3។
2x-9+3y=-1
ដក​ 4 ពី -5 ដើម្បីបាន -9។
2x+3y=-1+9
បន្ថែម 9 ទៅជ្រុងទាំងពីរ។
2x+3y=8
បូក -1 និង 9 ដើម្បីបាន 8។
y-x=5
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក x ពីជ្រុងទាំងពីរ។
2x+3y=8,-x+y=5
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-2x-3y=-8,2\left(-1\right)x+2y=2\times 5
ដើម្បីធ្វើឲ្យ 2x និង -x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
-2x-3y=-8,-2x+2y=10
ផ្ទៀងផ្ទាត់។
-2x+2x-3y-2y=-8-10
ដក -2x+2y=10 ពី -2x-3y=-8 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-3y-2y=-8-10
បូក -2x ជាមួយ 2x។ ការលុបតួ -2x និង 2x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-5y=-8-10
បូក -3y ជាមួយ -2y។
-5y=-18
បូក -8 ជាមួយ -10។
y=\frac{18}{5}
ចែកជ្រុងទាំងពីនឹង -5។
-x+\frac{18}{5}=5
ជំនួស \frac{18}{5} សម្រាប់ y ក្នុង -x+y=5។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-x=\frac{7}{5}
ដក \frac{18}{5} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{7}{5}
ចែកជ្រុងទាំងពីនឹង -1។
x=-\frac{7}{5},y=\frac{18}{5}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។