រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x+5y=8,x-3y=3
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+5y=8
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=-5y+8
ដក 5y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-5y+8\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{5}{2}y+4
គុណ \frac{1}{2} ដង -5y+8។
-\frac{5}{2}y+4-3y=3
ជំនួស -\frac{5y}{2}+4 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x-3y=3។
-\frac{11}{2}y+4=3
បូក -\frac{5y}{2} ជាមួយ -3y។
-\frac{11}{2}y=-1
ដក 4 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{2}{11}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{11}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{5}{2}\times \frac{2}{11}+4
ជំនួស \frac{2}{11} សម្រាប់ y ក្នុង x=-\frac{5}{2}y+4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-\frac{5}{11}+4
គុណ -\frac{5}{2} ដង \frac{2}{11} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=\frac{39}{11}
បូក 4 ជាមួយ -\frac{5}{11}។
x=\frac{39}{11},y=\frac{2}{11}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x+5y=8,x-3y=3
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&5\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\3\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&5\\1&-3\end{matrix}\right))\left(\begin{matrix}2&5\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\3\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&5\\1&-3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\3\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\3\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-5}&-\frac{5}{2\left(-3\right)-5}\\-\frac{1}{2\left(-3\right)-5}&\frac{2}{2\left(-3\right)-5}\end{matrix}\right)\left(\begin{matrix}8\\3\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&\frac{5}{11}\\\frac{1}{11}&-\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}8\\3\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 8+\frac{5}{11}\times 3\\\frac{1}{11}\times 8-\frac{2}{11}\times 3\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{39}{11}\\\frac{2}{11}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{39}{11},y=\frac{2}{11}
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x+5y=8,x-3y=3
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2x+5y=8,2x+2\left(-3\right)y=2\times 3
ដើម្បីធ្វើឲ្យ 2x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
2x+5y=8,2x-6y=6
ផ្ទៀងផ្ទាត់។
2x-2x+5y+6y=8-6
ដក 2x-6y=6 ពី 2x+5y=8 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
5y+6y=8-6
បូក 2x ជាមួយ -2x។ ការលុបតួ 2x និង -2x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
11y=8-6
បូក 5y ជាមួយ 6y។
11y=2
បូក 8 ជាមួយ -6។
y=\frac{2}{11}
ចែកជ្រុងទាំងពីនឹង 11។
x-3\times \frac{2}{11}=3
ជំនួស \frac{2}{11} សម្រាប់ y ក្នុង x-3y=3។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x-\frac{6}{11}=3
គុណ -3 ដង \frac{2}{11}។
x=\frac{39}{11}
បូក \frac{6}{11} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{39}{11},y=\frac{2}{11}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។