រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x+3y=13,-6x+y=11
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+3y=13
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=-3y+13
ដក 3y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-3y+13\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{3}{2}y+\frac{13}{2}
គុណ \frac{1}{2} ដង -3y+13។
-6\left(-\frac{3}{2}y+\frac{13}{2}\right)+y=11
ជំនួស \frac{-3y+13}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -6x+y=11។
9y-39+y=11
គុណ -6 ដង \frac{-3y+13}{2}។
10y-39=11
បូក 9y ជាមួយ y។
10y=50
បូក 39 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=5
ចែកជ្រុងទាំងពីនឹង 10។
x=-\frac{3}{2}\times 5+\frac{13}{2}
ជំនួស 5 សម្រាប់ y ក្នុង x=-\frac{3}{2}y+\frac{13}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-15+13}{2}
គុណ -\frac{3}{2} ដង 5។
x=-1
បូក \frac{13}{2} ជាមួយ -\frac{15}{2} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=-1,y=5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x+3y=13,-6x+y=11
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&3\\-6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\11\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&3\\-6&1\end{matrix}\right))\left(\begin{matrix}2&3\\-6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&3\\-6&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3\left(-6\right)}&-\frac{3}{2-3\left(-6\right)}\\-\frac{-6}{2-3\left(-6\right)}&\frac{2}{2-3\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}13\\11\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}&-\frac{3}{20}\\\frac{3}{10}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}13\\11\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\times 13-\frac{3}{20}\times 11\\\frac{3}{10}\times 13+\frac{1}{10}\times 11\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\5\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-1,y=5
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x+3y=13,-6x+y=11
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-6\times 2x-6\times 3y=-6\times 13,2\left(-6\right)x+2y=2\times 11
ដើម្បីធ្វើឲ្យ 2x និង -6x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -6 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
-12x-18y=-78,-12x+2y=22
ផ្ទៀងផ្ទាត់។
-12x+12x-18y-2y=-78-22
ដក -12x+2y=22 ពី -12x-18y=-78 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-18y-2y=-78-22
បូក -12x ជាមួយ 12x។ ការលុបតួ -12x និង 12x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-20y=-78-22
បូក -18y ជាមួយ -2y។
-20y=-100
បូក -78 ជាមួយ -22។
y=5
ចែកជ្រុងទាំងពីនឹង -20។
-6x+5=11
ជំនួស 5 សម្រាប់ y ក្នុង -6x+y=11។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-6x=6
ដក 5 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-1
ចែកជ្រុងទាំងពីនឹង -6។
x=-1,y=5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។