\left\{ \begin{array} { c } { - 2 x - 4 y = - 12 } \\ { 2 x + 3 y = 9 } \end{array} \right.
ដោះស្រាយសម្រាប់ x, y
x=0
y=3
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
-2x-4y=-12,2x+3y=9
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-2x-4y=-12
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-2x=4y-12
បូក 4y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{2}\left(4y-12\right)
ចែកជ្រុងទាំងពីនឹង -2។
x=-2y+6
គុណ -\frac{1}{2} ដង -12+4y។
2\left(-2y+6\right)+3y=9
ជំនួស -2y+6 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 2x+3y=9។
-4y+12+3y=9
គុណ 2 ដង -2y+6។
-y+12=9
បូក -4y ជាមួយ 3y។
-y=-3
ដក 12 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=3
ចែកជ្រុងទាំងពីនឹង -1។
x=-2\times 3+6
ជំនួស 3 សម្រាប់ y ក្នុង x=-2y+6។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-6+6
គុណ -2 ដង 3។
x=0
បូក 6 ជាមួយ -6។
x=0,y=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-2x-4y=-12,2x+3y=9
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\9\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right))\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right))\left(\begin{matrix}-12\\9\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-2&-4\\2&3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right))\left(\begin{matrix}-12\\9\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right))\left(\begin{matrix}-12\\9\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-2\times 3-\left(-4\times 2\right)}&-\frac{-4}{-2\times 3-\left(-4\times 2\right)}\\-\frac{2}{-2\times 3-\left(-4\times 2\right)}&-\frac{2}{-2\times 3-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-12\\9\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&2\\-1&-1\end{matrix}\right)\left(\begin{matrix}-12\\9\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\left(-12\right)+2\times 9\\-\left(-12\right)-9\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\3\end{matrix}\right)
ធ្វើនព្វន្ត។
x=0,y=3
ទាញយកធាតុម៉ាទ្រីស x និង y។
-2x-4y=-12,2x+3y=9
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2\left(-2\right)x+2\left(-4\right)y=2\left(-12\right),-2\times 2x-2\times 3y=-2\times 9
ដើម្បីធ្វើឲ្យ -2x និង 2x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -2។
-4x-8y=-24,-4x-6y=-18
ផ្ទៀងផ្ទាត់។
-4x+4x-8y+6y=-24+18
ដក -4x-6y=-18 ពី -4x-8y=-24 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-8y+6y=-24+18
បូក -4x ជាមួយ 4x។ ការលុបតួ -4x និង 4x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-2y=-24+18
បូក -8y ជាមួយ 6y។
-2y=-6
បូក -24 ជាមួយ 18។
y=3
ចែកជ្រុងទាំងពីនឹង -2។
2x+3\times 3=9
ជំនួស 3 សម្រាប់ y ក្នុង 2x+3y=9។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
2x+9=9
គុណ 3 ដង 3។
2x=0
ដក 9 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=0
ចែកជ្រុងទាំងពីនឹង 2។
x=0,y=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}