វាយតម្លៃ
\frac{17024}{9}\approx 1891.555555556
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
\int _{0}^{8}-133x^{2}\left(-\frac{1}{12}\right)\mathrm{d}x
គុណ x និង x ដើម្បីបាន x^{2}។
\int _{0}^{8}\frac{-133\left(-1\right)}{12}x^{2}\mathrm{d}x
បង្ហាញ -133\left(-\frac{1}{12}\right) ជាប្រភាគទោល។
\int _{0}^{8}\frac{133}{12}x^{2}\mathrm{d}x
គុណ -133 និង -1 ដើម្បីបាន 133។
\int \frac{133x^{2}}{12}\mathrm{d}x
គណនាអាំងតេក្រាលកំណត់មុន។
\frac{133\int x^{2}\mathrm{d}x}{12}
ដាក់តម្លៃថេរជាកត្តាដោយប្រើប្រាស់ \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x។
\frac{133x^{3}}{36}
ចាប់តាំបពី \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} សម្រាប់ k\neq -1, ជំនួស \int x^{2}\mathrm{d}x ដោយ \frac{x^{3}}{3}។
\frac{133}{36}\times 8^{3}-\frac{133}{36}\times 0^{3}
អាំងតេក្រាលកំណត់គឺជាភាពមិនស៊ីសង្វាក់នៃកន្សោមដែលត្រូវបានវាយតម្លៃនៅដែនកំណត់ខាងលើនៃសមាហរណកម្មដកអាំងតេក្រាលដែលត្រូវបានវាយតម្លៃនៅដែនកំណត់ទាបនៃការធ្វើសមាហរណកម្ម។
\frac{17024}{9}
ផ្ទៀងផ្ទាត់។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}