រំលងទៅមាតិកាមេ
វាយតម្លៃ
Tick mark Image

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

\int _{0}^{2}\left(x\left(x^{2}-4x+4\right)\right)^{2}\mathrm{d}x
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(x-2\right)^{2}។
\int _{0}^{2}\left(x^{3}-4x^{2}+4x\right)^{2}\mathrm{d}x
ប្រើលក្ខណៈបំបែក​ដើម្បីគុណ x នឹង x^{2}-4x+4។
\int _{0}^{2}x^{6}-8x^{5}+24x^{4}-32x^{3}+16x^{2}\mathrm{d}x
ការ៉េ x^{3}-4x^{2}+4x។
\int x^{6}-8x^{5}+24x^{4}-32x^{3}+16x^{2}\mathrm{d}x
គណនាអាំងតេក្រាលកំណត់មុន។
\int x^{6}\mathrm{d}x+\int -8x^{5}\mathrm{d}x+\int 24x^{4}\mathrm{d}x+\int -32x^{3}\mathrm{d}x+\int 16x^{2}\mathrm{d}x
បញ្ចូល​គ្នា​ផលបូក​តួ។
\int x^{6}\mathrm{d}x-8\int x^{5}\mathrm{d}x+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
ដាក់​តម្លៃ​ថេរ​ជា​កត្តា​នៃ​តួ​នីមួយៗ។
\frac{x^{7}}{7}-8\int x^{5}\mathrm{d}x+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
ចាប់តាំបពី \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} សម្រាប់ k\neq -1, ជំនួស \int x^{6}\mathrm{d}x ដោយ \frac{x^{7}}{7}។
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
ចាប់តាំបពី \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} សម្រាប់ k\neq -1, ជំនួស \int x^{5}\mathrm{d}x ដោយ \frac{x^{6}}{6}។ គុណ -8 ដង \frac{x^{6}}{6}។
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
ចាប់តាំបពី \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} សម្រាប់ k\neq -1, ជំនួស \int x^{4}\mathrm{d}x ដោយ \frac{x^{5}}{5}។ គុណ 24 ដង \frac{x^{5}}{5}។
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-8x^{4}+16\int x^{2}\mathrm{d}x
ចាប់តាំបពី \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} សម្រាប់ k\neq -1, ជំនួស \int x^{3}\mathrm{d}x ដោយ \frac{x^{4}}{4}។ គុណ -32 ដង \frac{x^{4}}{4}។
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-8x^{4}+\frac{16x^{3}}{3}
ចាប់តាំបពី \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} សម្រាប់ k\neq -1, ជំនួស \int x^{2}\mathrm{d}x ដោយ \frac{x^{3}}{3}។ គុណ 16 ដង \frac{x^{3}}{3}។
\frac{16x^{3}}{3}-8x^{4}+\frac{24x^{5}}{5}-\frac{4x^{6}}{3}+\frac{x^{7}}{7}
ផ្ទៀងផ្ទាត់។
\frac{16}{3}\times 2^{3}-8\times 2^{4}+\frac{24}{5}\times 2^{5}-\frac{4}{3}\times 2^{6}+\frac{2^{7}}{7}-\left(\frac{16}{3}\times 0^{3}-8\times 0^{4}+\frac{24}{5}\times 0^{5}-\frac{4}{3}\times 0^{6}+\frac{0^{7}}{7}\right)
អាំងតេក្រាលកំណត់គឺ​ជា​ភាព​មិន​ស៊ី​សង្វាក់​នៃ​កន្សោម​ដែល​ត្រូវ​បាន​វាយ​តម្លៃ​នៅ​ដែន​កំណត់​ខាងលើ​នៃ​សមាហរណកម្ម​ដក​អាំងតេក្រាល​ដែល​ត្រូវ​បាន​វាយ​តម្លៃ​នៅ​ដែន​កំណត់​ទាប​នៃ​ការ​ធ្វើ​សមាហរណកម្ម។
\frac{128}{105}
ផ្ទៀងផ្ទាត់។