វាយតម្លៃ
\frac{2\sqrt{6}x^{\frac{3}{2}}}{3}+С
ធ្វើឌីផេរ៉ងស្យែល w.r.t. x
\sqrt{6x}
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
\sqrt{6}\int \sqrt{x}\mathrm{d}x
ដាក់តម្លៃថេរជាកត្តាដោយប្រើប្រាស់ \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x។
\sqrt{6}\times \frac{2x^{\frac{3}{2}}}{3}
សរសេរ \sqrt{x} ឡើងវិញជា x^{\frac{1}{2}}។ ចាប់តាំបពី \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} សម្រាប់ k\neq -1, ជំនួស \int x^{\frac{1}{2}}\mathrm{d}x ដោយ \frac{x^{\frac{3}{2}}}{\frac{3}{2}}។ ផ្ទៀងផ្ទាត់។
\frac{2\sqrt{6}x^{\frac{3}{2}}}{3}
ផ្ទៀងផ្ទាត់។
\frac{2\sqrt{6}x^{\frac{3}{2}}}{3}+С
បើ F\left(x\right) ជាដេរីវ៉េបញ្ច្រាសនៃ f\left(x\right), នោះសំណុំទាំងអស់នៃដេរីវ៉េបញ្ច្រាសនៃ f\left(x\right) ត្រូវបានផ្ដល់ឲ្យដោយ F\left(x\right)+C។ ដូច្នេះ បន្ថែមតម្លៃថេរនៃអាំងតេក្រាល C\in \mathrm{R} ទៅកាន់លទ្ធផល។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}