វាយតម្លៃ
\frac{2}{5}+\frac{3}{40x}
ពន្លាត
\frac{2}{5}+\frac{3}{40x}
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
\frac{3x}{\left(7x\right)^{2}-\left(3x\right)^{2}}-\frac{3x-7x}{3x+7x}
បន្សំ 6x និង -3x ដើម្បីបាន 3x។
\frac{3x}{7^{2}x^{2}-\left(3x\right)^{2}}-\frac{3x-7x}{3x+7x}
ពន្លាត \left(7x\right)^{2}។
\frac{3x}{49x^{2}-\left(3x\right)^{2}}-\frac{3x-7x}{3x+7x}
គណនាស្វ័យគុណ 7 នៃ 2 ហើយបាន 49។
\frac{3x}{49x^{2}-3^{2}x^{2}}-\frac{3x-7x}{3x+7x}
ពន្លាត \left(3x\right)^{2}។
\frac{3x}{49x^{2}-9x^{2}}-\frac{3x-7x}{3x+7x}
គណនាស្វ័យគុណ 3 នៃ 2 ហើយបាន 9។
\frac{3x}{40x^{2}}-\frac{3x-7x}{3x+7x}
បន្សំ 49x^{2} និង -9x^{2} ដើម្បីបាន 40x^{2}។
\frac{3}{40x}-\frac{3x-7x}{3x+7x}
សម្រួល x ទាំងនៅក្នុងភាគយក និងភាគបែង។
\frac{3}{40x}-\frac{-4x}{3x+7x}
បន្សំ 3x និង -7x ដើម្បីបាន -4x។
\frac{3}{40x}-\frac{-4x}{10x}
បន្សំ 3x និង 7x ដើម្បីបាន 10x។
\frac{3}{40x}-\frac{-2}{5}
សម្រួល 2x ទាំងនៅក្នុងភាគយក និងភាគបែង។
\frac{3}{40x}-\left(-\frac{2}{5}\right)
ប្រភាគ\frac{-2}{5} អាចសរសេរជា -\frac{2}{5} ដោយការស្រងចេញសញ្ញាអវិជ្ជមាន។
\frac{3}{40x}+\frac{2}{5}
ភាពផ្ទុយគ្នានៃ -\frac{2}{5} គឺ \frac{2}{5}។
\frac{3}{40x}+\frac{2\times 8x}{40x}
ដើម្បីបូក ឬដកកន្សោម ពន្លាតពួកវាដើម្បីធ្វើឲ្យភាគបែងរបស់ពួកវាដូចគ្នា។ ពហុគុណរួមតូចបំផុតនៃ 40x និង 5 គឺ 40x។ គុណ \frac{2}{5} ដង \frac{8x}{8x}។
\frac{3+2\times 8x}{40x}
ដោយសារ \frac{3}{40x} និង \frac{2\times 8x}{40x} មានភាគបែងដូចគ្នា សូមបូកពួកវាដោយការបូកភាគយករបស់ពួកវា។
\frac{3+16x}{40x}
ធ្វើផលគុណនៅក្នុង 3+2\times 8x។
\frac{3x}{\left(7x\right)^{2}-\left(3x\right)^{2}}-\frac{3x-7x}{3x+7x}
បន្សំ 6x និង -3x ដើម្បីបាន 3x។
\frac{3x}{7^{2}x^{2}-\left(3x\right)^{2}}-\frac{3x-7x}{3x+7x}
ពន្លាត \left(7x\right)^{2}។
\frac{3x}{49x^{2}-\left(3x\right)^{2}}-\frac{3x-7x}{3x+7x}
គណនាស្វ័យគុណ 7 នៃ 2 ហើយបាន 49។
\frac{3x}{49x^{2}-3^{2}x^{2}}-\frac{3x-7x}{3x+7x}
ពន្លាត \left(3x\right)^{2}។
\frac{3x}{49x^{2}-9x^{2}}-\frac{3x-7x}{3x+7x}
គណនាស្វ័យគុណ 3 នៃ 2 ហើយបាន 9។
\frac{3x}{40x^{2}}-\frac{3x-7x}{3x+7x}
បន្សំ 49x^{2} និង -9x^{2} ដើម្បីបាន 40x^{2}។
\frac{3}{40x}-\frac{3x-7x}{3x+7x}
សម្រួល x ទាំងនៅក្នុងភាគយក និងភាគបែង។
\frac{3}{40x}-\frac{-4x}{3x+7x}
បន្សំ 3x និង -7x ដើម្បីបាន -4x។
\frac{3}{40x}-\frac{-4x}{10x}
បន្សំ 3x និង 7x ដើម្បីបាន 10x។
\frac{3}{40x}-\frac{-2}{5}
សម្រួល 2x ទាំងនៅក្នុងភាគយក និងភាគបែង។
\frac{3}{40x}-\left(-\frac{2}{5}\right)
ប្រភាគ\frac{-2}{5} អាចសរសេរជា -\frac{2}{5} ដោយការស្រងចេញសញ្ញាអវិជ្ជមាន។
\frac{3}{40x}+\frac{2}{5}
ភាពផ្ទុយគ្នានៃ -\frac{2}{5} គឺ \frac{2}{5}។
\frac{3}{40x}+\frac{2\times 8x}{40x}
ដើម្បីបូក ឬដកកន្សោម ពន្លាតពួកវាដើម្បីធ្វើឲ្យភាគបែងរបស់ពួកវាដូចគ្នា។ ពហុគុណរួមតូចបំផុតនៃ 40x និង 5 គឺ 40x។ គុណ \frac{2}{5} ដង \frac{8x}{8x}។
\frac{3+2\times 8x}{40x}
ដោយសារ \frac{3}{40x} និង \frac{2\times 8x}{40x} មានភាគបែងដូចគ្នា សូមបូកពួកវាដោយការបូកភាគយករបស់ពួកវា។
\frac{3+16x}{40x}
ធ្វើផលគុណនៅក្នុង 3+2\times 8x។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}