រំលងទៅមាតិកាមេ
ធ្វើឌីផេរ៉ងស្យែល w.r.t. x
Tick mark Image
វាយតម្លៃ
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\sin(x)}{1})
ចែក 1 នឹង 1 ដើម្បីបាន1។
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))
អ្វីមួយចែកនឹង​មួយបានខ្លួនឯង។
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))=\left(\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}\right)
ស​ម្រាប់អនុគមន៍ f\left(x\right) ដេរីវេគឺជាលីមីតនៃ \frac{f\left(x+h\right)-f\left(x\right)}{h} ជា h ខិតទៅ 0 បើលីមីតនោះមាន។
\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}
ប្រើរូមមន្ដផលបូកសម្រាប់ស៊ីនុស។
\lim_{h\to 0}\frac{\sin(x)\left(\cos(h)-1\right)+\cos(x)\sin(h)}{h}
ដាក់ជាកត្តា \sin(x)។
\left(\lim_{h\to 0}\sin(x)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(x)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
សរសេរលីមីតឡើងវិញ។
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
ប្រើភាពពិតដែល x ជាចំនួនថេរនៅពេលគណនាលីមីតនៅពេល h ខិតទៅ 0។
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)
លីមីត \lim_{x\to 0}\frac{\sin(x)}{x} គឺជា 1។
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
ដើម្បីគណនាលីមីត \lim_{h\to 0}\frac{\cos(h)-1}{h}​ ដំបូងត្រូវគុណភាគយក និងភាគបែងនឹង \cos(h)+1។
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
គុណ \cos(h)+1 ដង \cos(h)-1។
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
ប្រើលក្ខណៈពីតាករ។
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
សរសេរលីមីតឡើងវិញ។
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
លីមីត \lim_{x\to 0}\frac{\sin(x)}{x} គឺជា 1។
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
ប្រើភាពពិតដែល \frac{\sin(h)}{\cos(h)+1} គឺជាអនុគមន៍ជាប់នៅត្រង់ 0។
\cos(x)
ជំនួសតម្លៃ 0 ទៅក្នុងកន្សោម \sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)។