រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

\left(x-2\right)\left(x-2\right)-\left(x-1\right)\left(x-1\right)=x^{2}
អថេរ x មិនអាចស្មើនឹងតម្លៃណាមួយបានទេ 1,2 ដោយសារ​ការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង \left(x-2\right)\left(x-1\right) ផលគុណរួមតូចបំផុតនៃ x-1,x-2,x^{2}-3x+2។
\left(x-2\right)^{2}-\left(x-1\right)\left(x-1\right)=x^{2}
គុណ x-2 និង x-2 ដើម្បីបាន \left(x-2\right)^{2}។
\left(x-2\right)^{2}-\left(x-1\right)^{2}=x^{2}
គុណ x-1 និង x-1 ដើម្បីបាន \left(x-1\right)^{2}។
x^{2}-4x+4-\left(x-1\right)^{2}=x^{2}
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(x-2\right)^{2}។
x^{2}-4x+4-\left(x^{2}-2x+1\right)=x^{2}
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(x-1\right)^{2}។
x^{2}-4x+4-x^{2}+2x-1=x^{2}
ដើម្បីរកមើលពាក្យផ្ទុយនៃ x^{2}-2x+1 សូមរកមើលពាក្យផ្ទុយនៃពាក្យនីមួយៗ។
-4x+4+2x-1=x^{2}
បន្សំ x^{2} និង -x^{2} ដើម្បីបាន 0។
-2x+4-1=x^{2}
បន្សំ -4x និង 2x ដើម្បីបាន -2x។
-2x+3=x^{2}
ដក​ 1 ពី 4 ដើម្បីបាន 3។
-2x+3-x^{2}=0
ដក x^{2} ពីជ្រុងទាំងពីរ។
-x^{2}-2x+3=0
តម្រៀបពហុធារសារឡើងវិញ​ដើម្បីដាក់វានៅក្នុងទម្រង់ស្ដង់ដារ។ ដាក់តួតាមលំដាប់ពីស្វ័យគុណខ្ពស់បំផុតទៅទាបបំផុត។
a+b=-2 ab=-3=-3
ដើម្បីដោះស្រាយ​សមីការ សូមដាក់ផ្នែកខាងឆ្វេង​ដាក់ជាកត្តា​ដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា -x^{2}+ax+bx+3។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
a=1 b=-3
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនវិជ្ជមាន។ មានតែគូដូច្នេះប៉ុណ្ណោះគឺជាចម្លើយរបស់ប្រព័ន្ធ។
\left(-x^{2}+x\right)+\left(-3x+3\right)
សរសេរ -x^{2}-2x+3 ឡើងវិញជា \left(-x^{2}+x\right)+\left(-3x+3\right)។
x\left(-x+1\right)+3\left(-x+1\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង 3 ក្រុមទីពីរចេញ។
\left(-x+1\right)\left(x+3\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា -x+1 ដោយប្រើលក្ខណៈបំបែក។
x=1 x=-3
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ -x+1=0 និង x+3=0។
x=-3
អថេរ x មិនអាចស្មើនឹង 1 បានទេ។
\left(x-2\right)\left(x-2\right)-\left(x-1\right)\left(x-1\right)=x^{2}
អថេរ x មិនអាចស្មើនឹងតម្លៃណាមួយបានទេ 1,2 ដោយសារ​ការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង \left(x-2\right)\left(x-1\right) ផលគុណរួមតូចបំផុតនៃ x-1,x-2,x^{2}-3x+2។
\left(x-2\right)^{2}-\left(x-1\right)\left(x-1\right)=x^{2}
គុណ x-2 និង x-2 ដើម្បីបាន \left(x-2\right)^{2}។
\left(x-2\right)^{2}-\left(x-1\right)^{2}=x^{2}
គុណ x-1 និង x-1 ដើម្បីបាន \left(x-1\right)^{2}។
x^{2}-4x+4-\left(x-1\right)^{2}=x^{2}
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(x-2\right)^{2}។
x^{2}-4x+4-\left(x^{2}-2x+1\right)=x^{2}
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(x-1\right)^{2}។
x^{2}-4x+4-x^{2}+2x-1=x^{2}
ដើម្បីរកមើលពាក្យផ្ទុយនៃ x^{2}-2x+1 សូមរកមើលពាក្យផ្ទុយនៃពាក្យនីមួយៗ។
-4x+4+2x-1=x^{2}
បន្សំ x^{2} និង -x^{2} ដើម្បីបាន 0។
-2x+4-1=x^{2}
បន្សំ -4x និង 2x ដើម្បីបាន -2x។
-2x+3=x^{2}
ដក​ 1 ពី 4 ដើម្បីបាន 3។
-2x+3-x^{2}=0
ដក x^{2} ពីជ្រុងទាំងពីរ។
-x^{2}-2x+3=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស -1 សម្រាប់ a, -2 សម្រាប់ b និង 3 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
ការ៉េ -2។
x=\frac{-\left(-2\right)±\sqrt{4+4\times 3}}{2\left(-1\right)}
គុណ -4 ដង -1។
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\left(-1\right)}
គុណ 4 ដង 3។
x=\frac{-\left(-2\right)±\sqrt{16}}{2\left(-1\right)}
បូក 4 ជាមួយ 12។
x=\frac{-\left(-2\right)±4}{2\left(-1\right)}
យកឬសការ៉េនៃ 16។
x=\frac{2±4}{2\left(-1\right)}
ភាពផ្ទុយគ្នានៃ -2 គឺ 2។
x=\frac{2±4}{-2}
គុណ 2 ដង -1។
x=\frac{6}{-2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{2±4}{-2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 2 ជាមួយ 4។
x=-3
ចែក 6 នឹង -2។
x=-\frac{2}{-2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{2±4}{-2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 4 ពី 2។
x=1
ចែក -2 នឹង -2។
x=-3 x=1
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
x=-3
អថេរ x មិនអាចស្មើនឹង 1 បានទេ។
\left(x-2\right)\left(x-2\right)-\left(x-1\right)\left(x-1\right)=x^{2}
អថេរ x មិនអាចស្មើនឹងតម្លៃណាមួយបានទេ 1,2 ដោយសារ​ការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង \left(x-2\right)\left(x-1\right) ផលគុណរួមតូចបំផុតនៃ x-1,x-2,x^{2}-3x+2។
\left(x-2\right)^{2}-\left(x-1\right)\left(x-1\right)=x^{2}
គុណ x-2 និង x-2 ដើម្បីបាន \left(x-2\right)^{2}។
\left(x-2\right)^{2}-\left(x-1\right)^{2}=x^{2}
គុណ x-1 និង x-1 ដើម្បីបាន \left(x-1\right)^{2}។
x^{2}-4x+4-\left(x-1\right)^{2}=x^{2}
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(x-2\right)^{2}។
x^{2}-4x+4-\left(x^{2}-2x+1\right)=x^{2}
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(x-1\right)^{2}។
x^{2}-4x+4-x^{2}+2x-1=x^{2}
ដើម្បីរកមើលពាក្យផ្ទុយនៃ x^{2}-2x+1 សូមរកមើលពាក្យផ្ទុយនៃពាក្យនីមួយៗ។
-4x+4+2x-1=x^{2}
បន្សំ x^{2} និង -x^{2} ដើម្បីបាន 0។
-2x+4-1=x^{2}
បន្សំ -4x និង 2x ដើម្បីបាន -2x។
-2x+3=x^{2}
ដក​ 1 ពី 4 ដើម្បីបាន 3។
-2x+3-x^{2}=0
ដក x^{2} ពីជ្រុងទាំងពីរ។
-2x-x^{2}=-3
ដក 3 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
-x^{2}-2x=-3
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
\frac{-x^{2}-2x}{-1}=-\frac{3}{-1}
ចែកជ្រុងទាំងពីនឹង -1។
x^{2}+\left(-\frac{2}{-1}\right)x=-\frac{3}{-1}
ការចែកនឹង -1 មិនធ្វើប្រមាណវិធីគុណនឹង -1 ឡើងវិញ។
x^{2}+2x=-\frac{3}{-1}
ចែក -2 នឹង -1។
x^{2}+2x=3
ចែក -3 នឹង -1។
x^{2}+2x+1^{2}=3+1^{2}
ចែក 2 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន 1។ បន្ទាប់មក​បូកការ៉េនៃ 1 ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}+2x+1=3+1
ការ៉េ 1។
x^{2}+2x+1=4
បូក 3 ជាមួយ 1។
\left(x+1\right)^{2}=4
ដាក់ជាកត្តា x^{2}+2x+1 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x+1=2 x+1=-2
ផ្ទៀងផ្ទាត់។
x=1 x=-3
ដក 1 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-3
អថេរ x មិនអាចស្មើនឹង 1 បានទេ។