រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ដោះស្រាយសម្រាប់ y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

\frac{x-2}{-\frac{2}{3}}=\frac{y+4}{\frac{2}{3}+4}
ដក​ 2 ពី \frac{4}{3} ដើម្បីបាន -\frac{2}{3}។
\frac{-x+2}{\frac{2}{3}}=\frac{y+4}{\frac{2}{3}+4}
គុណទាំងភាគយក និង​ភាគបែង​នឹង -1
\frac{-x+2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
បូក \frac{2}{3} និង 4 ដើម្បីបាន \frac{14}{3}។
\frac{-x}{\frac{2}{3}}+\frac{2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
ចែកតួនីមួយៗនៃ -x+2 នឹង \frac{2}{3} ដើម្បីទទួលបាន \frac{-x}{\frac{2}{3}}+\frac{2}{\frac{2}{3}}។
-\frac{3}{2}x+\frac{2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
ចែក -x នឹង \frac{2}{3} ដើម្បីបាន-\frac{3}{2}x។
-\frac{3}{2}x+2\times \frac{3}{2}=\frac{y+4}{\frac{14}{3}}
ចែក 2 នឹង \frac{2}{3} ដោយការគុណ 2 នឹងប្រភាគផ្ទុយគ្នានៃ \frac{2}{3}.
-\frac{3}{2}x+3=\frac{y+4}{\frac{14}{3}}
គុណ 2 និង \frac{3}{2} ដើម្បីបាន 3។
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+\frac{4}{\frac{14}{3}}
ចែកតួនីមួយៗនៃ y+4 នឹង \frac{14}{3} ដើម្បីទទួលបាន \frac{y}{\frac{14}{3}}+\frac{4}{\frac{14}{3}}។
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+4\times \frac{3}{14}
ចែក 4 នឹង \frac{14}{3} ដោយការគុណ 4 នឹងប្រភាគផ្ទុយគ្នានៃ \frac{14}{3}.
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+\frac{6}{7}
គុណ 4 និង \frac{3}{14} ដើម្បីបាន \frac{6}{7}។
-\frac{3}{2}x=\frac{y}{\frac{14}{3}}+\frac{6}{7}-3
ដក 3 ពីជ្រុងទាំងពីរ។
-\frac{3}{2}x=\frac{y}{\frac{14}{3}}-\frac{15}{7}
ដក​ 3 ពី \frac{6}{7} ដើម្បីបាន -\frac{15}{7}។
-\frac{3}{2}x=\frac{3y}{14}-\frac{15}{7}
សមីការឥឡូវនេះស្ថិតនៅក្នុងទម្រង់ស្ដង់ដារ។
\frac{-\frac{3}{2}x}{-\frac{3}{2}}=\frac{\frac{3y}{14}-\frac{15}{7}}{-\frac{3}{2}}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{3}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{\frac{3y}{14}-\frac{15}{7}}{-\frac{3}{2}}
ការចែកនឹង -\frac{3}{2} មិនធ្វើប្រមាណវិធីគុណនឹង -\frac{3}{2} ឡើងវិញ។
x=\frac{10-y}{7}
ចែក -\frac{15}{7}+\frac{3y}{14} នឹង -\frac{3}{2} ដោយការគុណ -\frac{15}{7}+\frac{3y}{14} នឹងប្រភាគផ្ទុយគ្នានៃ -\frac{3}{2}.
\frac{x-2}{-\frac{2}{3}}=\frac{y+4}{\frac{2}{3}+4}
ដក​ 2 ពី \frac{4}{3} ដើម្បីបាន -\frac{2}{3}។
\frac{-x+2}{\frac{2}{3}}=\frac{y+4}{\frac{2}{3}+4}
គុណទាំងភាគយក និង​ភាគបែង​នឹង -1
\frac{-x+2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
បូក \frac{2}{3} និង 4 ដើម្បីបាន \frac{14}{3}។
\frac{-x}{\frac{2}{3}}+\frac{2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
ចែកតួនីមួយៗនៃ -x+2 នឹង \frac{2}{3} ដើម្បីទទួលបាន \frac{-x}{\frac{2}{3}}+\frac{2}{\frac{2}{3}}។
-\frac{3}{2}x+\frac{2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
ចែក -x នឹង \frac{2}{3} ដើម្បីបាន-\frac{3}{2}x។
-\frac{3}{2}x+2\times \frac{3}{2}=\frac{y+4}{\frac{14}{3}}
ចែក 2 នឹង \frac{2}{3} ដោយការគុណ 2 នឹងប្រភាគផ្ទុយគ្នានៃ \frac{2}{3}.
-\frac{3}{2}x+3=\frac{y+4}{\frac{14}{3}}
គុណ 2 និង \frac{3}{2} ដើម្បីបាន 3។
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+\frac{4}{\frac{14}{3}}
ចែកតួនីមួយៗនៃ y+4 នឹង \frac{14}{3} ដើម្បីទទួលបាន \frac{y}{\frac{14}{3}}+\frac{4}{\frac{14}{3}}។
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+4\times \frac{3}{14}
ចែក 4 នឹង \frac{14}{3} ដោយការគុណ 4 នឹងប្រភាគផ្ទុយគ្នានៃ \frac{14}{3}.
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+\frac{6}{7}
គុណ 4 និង \frac{3}{14} ដើម្បីបាន \frac{6}{7}។
\frac{y}{\frac{14}{3}}+\frac{6}{7}=-\frac{3}{2}x+3
ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
\frac{y}{\frac{14}{3}}=-\frac{3}{2}x+3-\frac{6}{7}
ដក \frac{6}{7} ពីជ្រុងទាំងពីរ។
\frac{y}{\frac{14}{3}}=-\frac{3}{2}x+\frac{15}{7}
ដក​ \frac{6}{7} ពី 3 ដើម្បីបាន \frac{15}{7}។
\frac{3}{14}y=-\frac{3x}{2}+\frac{15}{7}
សមីការឥឡូវនេះស្ថិតនៅក្នុងទម្រង់ស្ដង់ដារ។
\frac{\frac{3}{14}y}{\frac{3}{14}}=\frac{-\frac{3x}{2}+\frac{15}{7}}{\frac{3}{14}}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{3}{14} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
y=\frac{-\frac{3x}{2}+\frac{15}{7}}{\frac{3}{14}}
ការចែកនឹង \frac{3}{14} មិនធ្វើប្រមាណវិធីគុណនឹង \frac{3}{14} ឡើងវិញ។
y=10-7x
ចែក -\frac{3x}{2}+\frac{15}{7} នឹង \frac{3}{14} ដោយការគុណ -\frac{3x}{2}+\frac{15}{7} នឹងប្រភាគផ្ទុយគ្នានៃ \frac{3}{14}.