រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x^{2}-6x=-5
អថេរ x មិនអាចស្មើនឹង 1 បានទេ ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង x-1 ផលគុណរួមតូចបំផុតនៃ x-1,1-x។
x^{2}-6x+5=0
បន្ថែម 5 ទៅជ្រុងទាំងពីរ។
a+b=-6 ab=5
ដើម្បីដោះស្រាយសមីការ សូមដាក់ជាកត្តា x^{2}-6x+5 ដោយប្រើរូបមន្ដ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right)។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
a=-5 b=-1
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន a ហើយ b ជាចំនួនអវិជ្ជមានទាំងពីរ។ មានតែគូដូច្នេះប៉ុណ្ណោះគឺជាចម្លើយរបស់ប្រព័ន្ធ។
\left(x-5\right)\left(x-1\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តា \left(x+a\right)\left(x+b\right) ដោយប្រើតម្លៃដែលទទួលបាន។
x=5 x=1
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x-5=0 និង x-1=0។
x=5
អថេរ x មិនអាចស្មើនឹង 1 បានទេ។
x^{2}-6x=-5
អថេរ x មិនអាចស្មើនឹង 1 បានទេ ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង x-1 ផលគុណរួមតូចបំផុតនៃ x-1,1-x។
x^{2}-6x+5=0
បន្ថែម 5 ទៅជ្រុងទាំងពីរ។
a+b=-6 ab=1\times 5=5
ដើម្បីដោះស្រាយ​សមីការ សូមដាក់ផ្នែកខាងឆ្វេង​ដាក់ជាកត្តា​ដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា x^{2}+ax+bx+5។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
a=-5 b=-1
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន a ហើយ b ជាចំនួនអវិជ្ជមានទាំងពីរ។ មានតែគូដូច្នេះប៉ុណ្ណោះគឺជាចម្លើយរបស់ប្រព័ន្ធ។
\left(x^{2}-5x\right)+\left(-x+5\right)
សរសេរ x^{2}-6x+5 ឡើងវិញជា \left(x^{2}-5x\right)+\left(-x+5\right)។
x\left(x-5\right)-\left(x-5\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង -1 ក្រុមទីពីរចេញ។
\left(x-5\right)\left(x-1\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-5 ដោយប្រើលក្ខណៈបំបែក។
x=5 x=1
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x-5=0 និង x-1=0។
x=5
អថេរ x មិនអាចស្មើនឹង 1 បានទេ។
x^{2}-6x=-5
អថេរ x មិនអាចស្មើនឹង 1 បានទេ ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង x-1 ផលគុណរួមតូចបំផុតនៃ x-1,1-x។
x^{2}-6x+5=0
បន្ថែម 5 ទៅជ្រុងទាំងពីរ។
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 5}}{2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 1 សម្រាប់ a, -6 សម្រាប់ b និង 5 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-6\right)±\sqrt{36-4\times 5}}{2}
ការ៉េ -6។
x=\frac{-\left(-6\right)±\sqrt{36-20}}{2}
គុណ -4 ដង 5។
x=\frac{-\left(-6\right)±\sqrt{16}}{2}
បូក 36 ជាមួយ -20។
x=\frac{-\left(-6\right)±4}{2}
យកឬសការ៉េនៃ 16។
x=\frac{6±4}{2}
ភាពផ្ទុយគ្នានៃ -6 គឺ 6។
x=\frac{10}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{6±4}{2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 6 ជាមួយ 4។
x=5
ចែក 10 នឹង 2។
x=\frac{2}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{6±4}{2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 4 ពី 6។
x=1
ចែក 2 នឹង 2។
x=5 x=1
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
x=5
អថេរ x មិនអាចស្មើនឹង 1 បានទេ។
x^{2}-6x=-5
អថេរ x មិនអាចស្មើនឹង 1 បានទេ ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង x-1 ផលគុណរួមតូចបំផុតនៃ x-1,1-x។
x^{2}-6x+\left(-3\right)^{2}=-5+\left(-3\right)^{2}
ចែក -6 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -3។ បន្ទាប់មក​បូកការ៉េនៃ -3 ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-6x+9=-5+9
ការ៉េ -3។
x^{2}-6x+9=4
បូក -5 ជាមួយ 9។
\left(x-3\right)^{2}=4
ដាក់ជាកត្តា x^{2}-6x+9 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-3\right)^{2}}=\sqrt{4}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-3=2 x-3=-2
ផ្ទៀងផ្ទាត់។
x=5 x=1
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=5
អថេរ x មិនអាចស្មើនឹង 1 បានទេ។