ដោះស្រាយសម្រាប់ x
x=-1
x=1
x=2
x=-2
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
x^{2}\left(x^{2}+1\right)+4=6x^{2}
អថេរ x មិនអាចស្មើនឹង 0 បានទេ ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង 4x^{2} ផលគុណរួមតូចបំផុតនៃ 4,x^{2},2។
x^{4}+x^{2}+4=6x^{2}
ប្រើលក្ខណៈបំបែកដើម្បីគុណ x^{2} នឹង x^{2}+1។
x^{4}+x^{2}+4-6x^{2}=0
ដក 6x^{2} ពីជ្រុងទាំងពីរ។
x^{4}-5x^{2}+4=0
បន្សំ x^{2} និង -6x^{2} ដើម្បីបាន -5x^{2}។
t^{2}-5t+4=0
ជំនួស t សម្រាប់ x^{2}។
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\times 4}}{2}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 1 សម្រាប់ a, -5 សម្រាប់ b និង 4 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
t=\frac{5±3}{2}
ធ្វើការគណនា។
t=4 t=1
ដោះស្រាយសមីការ t=\frac{5±3}{2} នៅពេល ± គឺជាប្រមាណវិធីបូក និងនៅពេល ± គឺជាប្រមាណវិធីដក។
x=2 x=-2 x=1 x=-1
ដោយ x=t^{2} ចម្លើយត្រូវទទួលបានដោយការវាយតម្លៃ x=±\sqrt{t} សម្រាប់ t នីមួយៗ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}