\frac { k g } { 60 } | \frac { ? } { 36 }
វាយតម្លៃ
\frac{gk}{2160}
ធ្វើឌីផេរ៉ងស្យែល w.r.t. k
\frac{g}{2160}
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
\frac{kg}{60}\times \frac{1}{36}
តម្លៃដាច់ខាតនៃចំនួនពិត a គឺជា a នៅពេល a\geq 0 ឬ -a នៅពេល a<0។ តម្លៃដាច់ខាតនស \frac{1}{36} គឺ \frac{1}{36}។
\frac{kg}{60\times 36}
គុណ \frac{kg}{60} ដង \frac{1}{36} ដោយការគុណភាគយកចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។
\frac{kg}{2160}
គុណ 60 និង 36 ដើម្បីបាន 2160។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}