វាយតម្លៃ
\frac{1}{25}-\frac{2}{25}i=0.04-0.08i
ចំនួនពិត
\frac{1}{25} = 0.04
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
\frac{5-10i}{5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)i^{2}}
គុណចំនួនកុំផ្លិច 5+10i និង 5-10i ដូចដែលអ្នកគុណទ្វេធា។
\frac{5-10i}{5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)\left(-1\right)}
តាមនិយមន័យ i^{2} គឺ -1។
\frac{5-10i}{25-50i+50i+100}
ធ្វើផលគុណនៅក្នុង 5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)\left(-1\right)។
\frac{5-10i}{25+100+\left(-50+50\right)i}
បន្សំផ្នែកពិត និងផ្នែកនិមិត្តនៅក្នុង 25-50i+50i+100។
\frac{5-10i}{125}
ធ្វើផលបូកនៅក្នុង 25+100+\left(-50+50\right)i។
\frac{1}{25}-\frac{2}{25}i
ចែក 5-10i នឹង 125 ដើម្បីបាន\frac{1}{25}-\frac{2}{25}i។
Re(\frac{5-10i}{5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)i^{2}})
គុណចំនួនកុំផ្លិច 5+10i និង 5-10i ដូចដែលអ្នកគុណទ្វេធា។
Re(\frac{5-10i}{5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)\left(-1\right)})
តាមនិយមន័យ i^{2} គឺ -1។
Re(\frac{5-10i}{25-50i+50i+100})
ធ្វើផលគុណនៅក្នុង 5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)\left(-1\right)។
Re(\frac{5-10i}{25+100+\left(-50+50\right)i})
បន្សំផ្នែកពិត និងផ្នែកនិមិត្តនៅក្នុង 25-50i+50i+100។
Re(\frac{5-10i}{125})
ធ្វើផលបូកនៅក្នុង 25+100+\left(-50+50\right)i។
Re(\frac{1}{25}-\frac{2}{25}i)
ចែក 5-10i នឹង 125 ដើម្បីបាន\frac{1}{25}-\frac{2}{25}i។
\frac{1}{25}
ផ្នែកពិតនៃ \frac{1}{25}-\frac{2}{25}i គឺ \frac{1}{25}។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}