វាយតម្លៃ
\frac{\sqrt[6]{x}}{2}
ធ្វើឌីផេរ៉ងស្យែល w.r.t. x
\frac{1}{12x^{\frac{5}{6}}}
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
\frac{4^{1}\sqrt{x}}{8^{1}\sqrt[3]{x}}
ប្រើវិធាននៃនិទស្សន្តដើម្បីផ្ទៀងផ្ទាត់កន្សោម។
\frac{4^{1}x^{\frac{1}{2}-\frac{1}{3}}}{8^{1}}
ដើម្បីចែកស្វ័យគុណនៃគោលដូចគ្នា ត្រូវដកនិទស្សន្តរបស់ភាគបែងពីនិទស្សន្តរបស់ភាគយក។
\frac{4^{1}\sqrt[6]{x}}{8^{1}}
ដក \frac{1}{3} ពី \frac{1}{2} ដោយការរកភាគបែងរួម ហើយដកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅចំនួនដែលទាបបំផុត បើអាចធ្វើបាន។
\frac{1}{2}\sqrt[6]{x}
កាត់បន្ថយប្រភាគ \frac{4}{8} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 4។
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4}{8}x^{\frac{1}{2}-\frac{1}{3}})
ដើម្បីចែកស្វ័យគុណនៃគោលដូចគ្នា ត្រូវដកនិទស្សន្តរបស់ភាគបែងពីនិទស្សន្តរបស់ភាគយក។
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2}\sqrt[6]{x})
ធ្វើនព្វន្ត។
\frac{1}{6}\times \frac{1}{2}x^{\frac{1}{6}-1}
ដេរីវេនៃពហុធាគឺជាផលបូកនៃដេរីវេនៃតួរបស់វា។ ដេរីវេនៃគ្រប់តួថេរគឺ 0។ ដេរីវេនៃ ax^{n} គឺ nax^{n-1}។
\frac{1}{12}x^{-\frac{5}{6}}
ធ្វើនព្វន្ត។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}