រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x\times 4+x-5=x\left(x-1\right)
អថេរ x មិនអាចស្មើនឹងតម្លៃណាមួយបានទេ 0,5 ដោយសារ​ការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង x\left(x-5\right) ផលគុណរួមតូចបំផុតនៃ x-5,x។
5x-5=x\left(x-1\right)
បន្សំ x\times 4 និង x ដើម្បីបាន 5x។
5x-5=x^{2}-x
ប្រើលក្ខណៈបំបែក​ដើម្បីគុណ x នឹង x-1។
5x-5-x^{2}=-x
ដក x^{2} ពីជ្រុងទាំងពីរ។
5x-5-x^{2}+x=0
បន្ថែម x ទៅជ្រុងទាំងពីរ។
6x-5-x^{2}=0
បន្សំ 5x និង x ដើម្បីបាន 6x។
-x^{2}+6x-5=0
តម្រៀបពហុធារសារឡើងវិញ​ដើម្បីដាក់វានៅក្នុងទម្រង់ស្ដង់ដារ។ ដាក់តួតាមលំដាប់ពីស្វ័យគុណខ្ពស់បំផុតទៅទាបបំផុត។
a+b=6 ab=-\left(-5\right)=5
ដើម្បីដោះស្រាយ​សមីការ សូមដាក់ផ្នែកខាងឆ្វេង​ដាក់ជាកត្តា​ដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា -x^{2}+ax+bx-5។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
a=5 b=1
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន a ហើយ b ជាចំនួនវិជ្ជមានទាំងពីរ។ មានតែគូដូច្នេះប៉ុណ្ណោះគឺជាចម្លើយរបស់ប្រព័ន្ធ។
\left(-x^{2}+5x\right)+\left(x-5\right)
សរសេរ -x^{2}+6x-5 ឡើងវិញជា \left(-x^{2}+5x\right)+\left(x-5\right)។
-x\left(x-5\right)+x-5
ដាក់ជាកត្តា -x នៅក្នុង -x^{2}+5x។
\left(x-5\right)\left(-x+1\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-5 ដោយប្រើលក្ខណៈបំបែក។
x=5 x=1
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x-5=0 និង -x+1=0។
x=1
អថេរ x មិនអាចស្មើនឹង 5 បានទេ។
x\times 4+x-5=x\left(x-1\right)
អថេរ x មិនអាចស្មើនឹងតម្លៃណាមួយបានទេ 0,5 ដោយសារ​ការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង x\left(x-5\right) ផលគុណរួមតូចបំផុតនៃ x-5,x។
5x-5=x\left(x-1\right)
បន្សំ x\times 4 និង x ដើម្បីបាន 5x។
5x-5=x^{2}-x
ប្រើលក្ខណៈបំបែក​ដើម្បីគុណ x នឹង x-1។
5x-5-x^{2}=-x
ដក x^{2} ពីជ្រុងទាំងពីរ។
5x-5-x^{2}+x=0
បន្ថែម x ទៅជ្រុងទាំងពីរ។
6x-5-x^{2}=0
បន្សំ 5x និង x ដើម្បីបាន 6x។
-x^{2}+6x-5=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស -1 សម្រាប់ a, 6 សម្រាប់ b និង -5 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-6±\sqrt{36-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
ការ៉េ 6។
x=\frac{-6±\sqrt{36+4\left(-5\right)}}{2\left(-1\right)}
គុណ -4 ដង -1។
x=\frac{-6±\sqrt{36-20}}{2\left(-1\right)}
គុណ 4 ដង -5។
x=\frac{-6±\sqrt{16}}{2\left(-1\right)}
បូក 36 ជាមួយ -20។
x=\frac{-6±4}{2\left(-1\right)}
យកឬសការ៉េនៃ 16។
x=\frac{-6±4}{-2}
គុណ 2 ដង -1។
x=-\frac{2}{-2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-6±4}{-2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -6 ជាមួយ 4។
x=1
ចែក -2 នឹង -2។
x=-\frac{10}{-2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-6±4}{-2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 4 ពី -6។
x=5
ចែក -10 នឹង -2។
x=1 x=5
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
x=1
អថេរ x មិនអាចស្មើនឹង 5 បានទេ។
x\times 4+x-5=x\left(x-1\right)
អថេរ x មិនអាចស្មើនឹងតម្លៃណាមួយបានទេ 0,5 ដោយសារ​ការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង x\left(x-5\right) ផលគុណរួមតូចបំផុតនៃ x-5,x។
5x-5=x\left(x-1\right)
បន្សំ x\times 4 និង x ដើម្បីបាន 5x។
5x-5=x^{2}-x
ប្រើលក្ខណៈបំបែក​ដើម្បីគុណ x នឹង x-1។
5x-5-x^{2}=-x
ដក x^{2} ពីជ្រុងទាំងពីរ។
5x-5-x^{2}+x=0
បន្ថែម x ទៅជ្រុងទាំងពីរ។
6x-5-x^{2}=0
បន្សំ 5x និង x ដើម្បីបាន 6x។
6x-x^{2}=5
បន្ថែម 5 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
-x^{2}+6x=5
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
\frac{-x^{2}+6x}{-1}=\frac{5}{-1}
ចែកជ្រុងទាំងពីនឹង -1។
x^{2}+\frac{6}{-1}x=\frac{5}{-1}
ការចែកនឹង -1 មិនធ្វើប្រមាណវិធីគុណនឹង -1 ឡើងវិញ។
x^{2}-6x=\frac{5}{-1}
ចែក 6 នឹង -1។
x^{2}-6x=-5
ចែក 5 នឹង -1។
x^{2}-6x+\left(-3\right)^{2}=-5+\left(-3\right)^{2}
ចែក -6 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -3។ បន្ទាប់មក​បូកការ៉េនៃ -3 ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-6x+9=-5+9
ការ៉េ -3។
x^{2}-6x+9=4
បូក -5 ជាមួយ 9។
\left(x-3\right)^{2}=4
ដាក់ជាកត្តា x^{2}-6x+9 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-3\right)^{2}}=\sqrt{4}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-3=2 x-3=-2
ផ្ទៀងផ្ទាត់។
x=5 x=1
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=1
អថេរ x មិនអាចស្មើនឹង 5 បានទេ។