ធ្វើឌីផេរ៉ងស្យែល w.r.t. t
-\frac{20}{\left(5t-1\right)^{2}}
វាយតម្លៃ
\frac{20t}{5t-1}
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
\frac{\left(5t^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}t}(20t^{1})-20t^{1}\frac{\mathrm{d}}{\mathrm{d}t}(5t^{1}-1)}{\left(5t^{1}-1\right)^{2}}
សម្រាប់អនុគមន៍ឌីផេរ៉ង់ស្យែលពីរ ដេរីវេនៃផលចែកនៃអនុគមន៍ចំនួនពីរគឺជាភាគបែងគុណនឹងដេរីវេនៃភាគយកដកភាគយកគុណនឹងដេរីវេនៃភាគបែង ទាំងអស់ចែកដោយភាគបែងដែលបានលើកជាការ៉េ។
\frac{\left(5t^{1}-1\right)\times 20t^{1-1}-20t^{1}\times 5t^{1-1}}{\left(5t^{1}-1\right)^{2}}
ដេរីវេនៃពហុធាគឺជាផលបូកនៃដេរីវេនៃតួរបស់វា។ ដេរីវេនៃគ្រប់តួថេរគឺ 0។ ដេរីវេនៃ ax^{n} គឺ nax^{n-1}។
\frac{\left(5t^{1}-1\right)\times 20t^{0}-20t^{1}\times 5t^{0}}{\left(5t^{1}-1\right)^{2}}
ធ្វើនព្វន្ត។
\frac{5t^{1}\times 20t^{0}-20t^{0}-20t^{1}\times 5t^{0}}{\left(5t^{1}-1\right)^{2}}
ពន្លាតដោយការប្រើលក្ខណៈបំបែក។
\frac{5\times 20t^{1}-20t^{0}-20\times 5t^{1}}{\left(5t^{1}-1\right)^{2}}
ដើម្បីគុណស្វ័យគុណនៃគោលដូចគ្នា ត្រូវបូកនិទស្សន្តរបស់វា។
\frac{100t^{1}-20t^{0}-100t^{1}}{\left(5t^{1}-1\right)^{2}}
ធ្វើនព្វន្ត។
\frac{\left(100-100\right)t^{1}-20t^{0}}{\left(5t^{1}-1\right)^{2}}
បន្សំតួដូចគ្នា។
\frac{-20t^{0}}{\left(5t^{1}-1\right)^{2}}
ដក 100 ពី 100។
\frac{-20t^{0}}{\left(5t-1\right)^{2}}
សម្រាប់គ្រប់តួ t, t^{1}=t។
\frac{-20}{\left(5t-1\right)^{2}}
សម្រាប់គ្រប់តួ t លើកលែងតែ 0, t^{0}=1។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}