វាយតម្លៃ
\frac{4}{a-b}
ពន្លាត
\frac{4}{a-b}
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
\frac{2a+2b}{b}\left(\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{a-b}{\left(a+b\right)\left(a-b\right)}\right)
ដើម្បីបូក ឬដកកន្សោម ពន្លាតពួកវាដើម្បីធ្វើឲ្យភាគបែងរបស់ពួកវាដូចគ្នា។ ពហុគុណរួមតូចបំផុតនៃ a-b និង a+b គឺ \left(a+b\right)\left(a-b\right)។ គុណ \frac{1}{a-b} ដង \frac{a+b}{a+b}។ គុណ \frac{1}{a+b} ដង \frac{a-b}{a-b}។
\frac{2a+2b}{b}\times \frac{a+b-\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}
ដោយសារ \frac{a+b}{\left(a+b\right)\left(a-b\right)} និង \frac{a-b}{\left(a+b\right)\left(a-b\right)} មានភាគបែងដូចគ្នា សូមដកពួកវាដោយការដកភាគយករបស់ពួកវា។
\frac{2a+2b}{b}\times \frac{a+b-a+b}{\left(a+b\right)\left(a-b\right)}
ធ្វើផលគុណនៅក្នុង a+b-\left(a-b\right)។
\frac{2a+2b}{b}\times \frac{2b}{\left(a+b\right)\left(a-b\right)}
បន្សំដូចជាតួនៅក្នុង a+b-a+b។
\frac{\left(2a+2b\right)\times 2b}{b\left(a+b\right)\left(a-b\right)}
គុណ \frac{2a+2b}{b} ដង \frac{2b}{\left(a+b\right)\left(a-b\right)} ដោយការគុណភាគយកចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។
\frac{2\left(2a+2b\right)}{\left(a+b\right)\left(a-b\right)}
សម្រួល b ទាំងនៅក្នុងភាគយក និងភាគបែង។
\frac{2^{2}\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
ដាក់ជាកត្តានូវកន្សោមមិនទាន់បានលើកជាកត្តារួច។
\frac{2^{2}}{a-b}
សម្រួល a+b ទាំងនៅក្នុងភាគយក និងភាគបែង។
\frac{4}{a-b}
ពង្រីកកន្សោម។
\frac{2a+2b}{b}\left(\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{a-b}{\left(a+b\right)\left(a-b\right)}\right)
ដើម្បីបូក ឬដកកន្សោម ពន្លាតពួកវាដើម្បីធ្វើឲ្យភាគបែងរបស់ពួកវាដូចគ្នា។ ពហុគុណរួមតូចបំផុតនៃ a-b និង a+b គឺ \left(a+b\right)\left(a-b\right)។ គុណ \frac{1}{a-b} ដង \frac{a+b}{a+b}។ គុណ \frac{1}{a+b} ដង \frac{a-b}{a-b}។
\frac{2a+2b}{b}\times \frac{a+b-\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}
ដោយសារ \frac{a+b}{\left(a+b\right)\left(a-b\right)} និង \frac{a-b}{\left(a+b\right)\left(a-b\right)} មានភាគបែងដូចគ្នា សូមដកពួកវាដោយការដកភាគយករបស់ពួកវា។
\frac{2a+2b}{b}\times \frac{a+b-a+b}{\left(a+b\right)\left(a-b\right)}
ធ្វើផលគុណនៅក្នុង a+b-\left(a-b\right)។
\frac{2a+2b}{b}\times \frac{2b}{\left(a+b\right)\left(a-b\right)}
បន្សំដូចជាតួនៅក្នុង a+b-a+b។
\frac{\left(2a+2b\right)\times 2b}{b\left(a+b\right)\left(a-b\right)}
គុណ \frac{2a+2b}{b} ដង \frac{2b}{\left(a+b\right)\left(a-b\right)} ដោយការគុណភាគយកចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។
\frac{2\left(2a+2b\right)}{\left(a+b\right)\left(a-b\right)}
សម្រួល b ទាំងនៅក្នុងភាគយក និងភាគបែង។
\frac{2^{2}\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
ដាក់ជាកត្តានូវកន្សោមមិនទាន់បានលើកជាកត្តារួច។
\frac{2^{2}}{a-b}
សម្រួល a+b ទាំងនៅក្នុងភាគយក និងភាគបែង។
\frac{4}{a-b}
ពង្រីកកន្សោម។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}