ដោះស្រាយសម្រាប់ y
y=-2
y=2
y=6
y=-6
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
144+y^{2}y^{2}=40y^{2}
អថេរ y មិនអាចស្មើនឹង 0 បានទេ ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ y^{2}។
144+y^{4}=40y^{2}
ដើម្បីគុណស្វ័យគុណនៃគោលដូចគ្នា ត្រូវបូកនិទស្សន្តរបស់ពួកវា។ បូក 2 និង 2 ដើម្បីទទួលបាន 4។
144+y^{4}-40y^{2}=0
ដក 40y^{2} ពីជ្រុងទាំងពីរ។
t^{2}-40t+144=0
ជំនួស t សម្រាប់ y^{2}។
t=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 1\times 144}}{2}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 1 សម្រាប់ a, -40 សម្រាប់ b និង 144 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
t=\frac{40±32}{2}
ធ្វើការគណនា។
t=36 t=4
ដោះស្រាយសមីការ t=\frac{40±32}{2} នៅពេល ± គឺជាប្រមាណវិធីបូក និងនៅពេល ± គឺជាប្រមាណវិធីដក។
y=6 y=-6 y=2 y=-2
ដោយ y=t^{2} ចម្លើយត្រូវទទួលបានដោយការវាយតម្លៃ y=±\sqrt{t} សម្រាប់ t នីមួយៗ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}