រំលងទៅមាតិកាមេ
ធ្វើឌីផេរ៉ងស្យែល w.r.t. x
Tick mark Image
វាយតម្លៃ
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

-\left(-x^{1}+1\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+1)
បើ F គឺជាបណ្ដាក់នៃអនុគមន៍ឌីផេរ៉ង់ស្យែល f\left(u\right) និង u=g\left(x\right) មានន័យថាបើ F\left(x\right)=f\left(g\left(x\right)\right) នោះ​ដេរីវេនៃ F គឺជា​ដេរីវេនៃ f ធៀបទៅនឹង u គុណនឹងដេរីវេនៃ g ធៀបទៅនឹង x មានន័យថា \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right)។
-\left(-x^{1}+1\right)^{-2}\left(-1\right)x^{1-1}
ដេរីវេនៃពហុធាគឺជាផលបូកនៃដេរីវេនៃតួរបស់វា។ ដេរីវេនៃគ្រប់តួថេរគឺ 0។ ដេរីវេនៃ ax^{n} គឺ nax^{n-1}។
x^{0}\left(-x^{1}+1\right)^{-2}
ផ្ទៀងផ្ទាត់។
x^{0}\left(-x+1\right)^{-2}
សម្រាប់គ្រប់តួ t, t^{1}=t។
1\left(-x+1\right)^{-2}
សម្រាប់គ្រប់តួ t លើកលែងតែ 0, t^{0}=1។
\left(-x+1\right)^{-2}
សម្រាប់គ្រប់តួ t, t\times 1=t និង 1t=t។