រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

-3=-xx+x\times 2
អថេរ x មិនអាចស្មើនឹង 0 បានទេ ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ x។
-3=-x^{2}+x\times 2
គុណ x និង x ដើម្បីបាន x^{2}។
-x^{2}+x\times 2=-3
ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
-x^{2}+x\times 2+3=0
បន្ថែម 3 ទៅជ្រុងទាំងពីរ។
-x^{2}+2x+3=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស -1 សម្រាប់ a, 2 សម្រាប់ b និង 3 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
ការ៉េ 2។
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
គុណ -4 ដង -1។
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
គុណ 4 ដង 3។
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
បូក 4 ជាមួយ 12។
x=\frac{-2±4}{2\left(-1\right)}
យកឬសការ៉េនៃ 16។
x=\frac{-2±4}{-2}
គុណ 2 ដង -1។
x=\frac{2}{-2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-2±4}{-2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -2 ជាមួយ 4។
x=-1
ចែក 2 នឹង -2។
x=-\frac{6}{-2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-2±4}{-2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 4 ពី -2។
x=3
ចែក -6 នឹង -2។
x=-1 x=3
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
-3=-xx+x\times 2
អថេរ x មិនអាចស្មើនឹង 0 បានទេ ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ x។
-3=-x^{2}+x\times 2
គុណ x និង x ដើម្បីបាន x^{2}។
-x^{2}+x\times 2=-3
ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
-x^{2}+2x=-3
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
\frac{-x^{2}+2x}{-1}=-\frac{3}{-1}
ចែកជ្រុងទាំងពីនឹង -1។
x^{2}+\frac{2}{-1}x=-\frac{3}{-1}
ការចែកនឹង -1 មិនធ្វើប្រមាណវិធីគុណនឹង -1 ឡើងវិញ។
x^{2}-2x=-\frac{3}{-1}
ចែក 2 នឹង -1។
x^{2}-2x=3
ចែក -3 នឹង -1។
x^{2}-2x+1=3+1
ចែក -2 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -1។ បន្ទាប់មក​បូកការ៉េនៃ -1 ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-2x+1=4
បូក 3 ជាមួយ 1។
\left(x-1\right)^{2}=4
ដាក់ជាកត្តា x^{2}-2x+1 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-1=2 x-1=-2
ផ្ទៀងផ្ទាត់។
x=3 x=-1
បូក 1 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។