រំលងទៅមាតិកាមេ
វាយតម្លៃ
Tick mark Image
ធ្វើឌីផេរ៉ងស្យែល w.r.t. k
Tick mark Image

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

\frac{k^{-4}k^{3}}{2k^{3}}
ដើម្បីលើកស្វ័យគុណទៅជាស្វ័យគុណមួយទៀត ត្រូវគុណ​និទស្សន្ត។ គុណ 2 និង -2 ដើម្បីទទួលបាន -4។
\frac{k^{-1}}{2k^{3}}
ដើម្បីគុណស្វ័យគុណនៃគោលដូចគ្នា ត្រូវបូក​និទស្សន្តរបស់ពួកវា។ បូក -4 និង 3 ដើម្បីទទួលបាន -1។
\frac{1}{2k^{4}}
ដើម្បីចែកស្វ័យគុណនៃគោលដូចគ្នា ត្រូវដក​និទស្សន្តរបស់ភាគបែងពីនិទស្សន្តរបស់ភាគយក។
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{k^{-4}k^{3}}{2k^{3}})
ដើម្បីលើកស្វ័យគុណទៅជាស្វ័យគុណមួយទៀត ត្រូវគុណ​និទស្សន្ត។ គុណ 2 និង -2 ដើម្បីទទួលបាន -4។
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{k^{-1}}{2k^{3}})
ដើម្បីគុណស្វ័យគុណនៃគោលដូចគ្នា ត្រូវបូក​និទស្សន្តរបស់ពួកវា។ បូក -4 និង 3 ដើម្បីទទួលបាន -1។
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{1}{2k^{4}})
ដើម្បីចែកស្វ័យគុណនៃគោលដូចគ្នា ត្រូវដក​និទស្សន្តរបស់ភាគបែងពីនិទស្សន្តរបស់ភាគយក។
-\left(2k^{4}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}k}(2k^{4})
បើ F គឺជាបណ្ដាក់នៃអនុគមន៍ឌីផេរ៉ង់ស្យែល f\left(u\right) និង u=g\left(x\right) មានន័យថាបើ F\left(x\right)=f\left(g\left(x\right)\right) នោះ​ដេរីវេនៃ F គឺជា​ដេរីវេនៃ f ធៀបទៅនឹង u គុណនឹងដេរីវេនៃ g ធៀបទៅនឹង x មានន័យថា \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right)។
-\left(2k^{4}\right)^{-2}\times 4\times 2k^{4-1}
ដេរីវេនៃពហុធាគឺជាផលបូកនៃដេរីវេនៃតួរបស់វា។ ដេរីវេនៃគ្រប់តួថេរគឺ 0។ ដេរីវេនៃ ax^{n} គឺ nax^{n-1}។
-8k^{3}\times \left(2k^{4}\right)^{-2}
ផ្ទៀងផ្ទាត់។