ធ្វើឌីផេរ៉ងស្យែល w.r.t. θ
-\sin(\theta )
វាយតម្លៃ
\cos(\theta )
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
\frac{\mathrm{d}}{\mathrm{d}\theta }(\cos(\theta ))
អ្វីមួយចែកនឹងមួយបានខ្លួនឯង។
\frac{\mathrm{d}}{\mathrm{d}\theta }(\cos(\theta ))=\left(\lim_{h\to 0}\frac{\cos(\theta +h)-\cos(\theta )}{h}\right)
សម្រាប់អនុគមន៍ f\left(x\right) ដេរីវេគឺជាលីមីតនៃ \frac{f\left(x+h\right)-f\left(x\right)}{h} ជា h ខិតទៅ 0 បើលីមីតនោះមាន។
\lim_{h\to 0}\frac{\cos(h+\theta )-\cos(\theta )}{h}
ប្រើរូមមន្ដផលបូកសម្រាប់កូស៊ីនុស។
\lim_{h\to 0}\frac{\cos(\theta )\left(\cos(h)-1\right)-\sin(\theta )\sin(h)}{h}
ដាក់ជាកត្តា \cos(\theta )។
\left(\lim_{h\to 0}\cos(\theta )\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\left(\lim_{h\to 0}\sin(\theta )\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
សរសេរលីមីតឡើងវិញ។
\cos(\theta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(\theta )\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
ប្រើភាពពិតដែល \theta ជាចំនួនថេរនៅពេលគណនាលីមីតនៅពេល h ខិតទៅ 0។
\cos(\theta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(\theta )
លីមីត \lim_{\theta \to 0}\frac{\sin(\theta )}{\theta } គឺជា 1។
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
ដើម្បីគណនាលីមីត \lim_{h\to 0}\frac{\cos(h)-1}{h} ដំបូងត្រូវគុណភាគយក និងភាគបែងនឹង \cos(h)+1។
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
គុណ \cos(h)+1 ដង \cos(h)-1។
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
ប្រើលក្ខណៈពីតាករ។
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
សរសេរលីមីតឡើងវិញ។
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
លីមីត \lim_{\theta \to 0}\frac{\sin(\theta )}{\theta } គឺជា 1។
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
ប្រើភាពពិតដែល \frac{\sin(h)}{\cos(h)+1} គឺជាអនុគមន៍ជាប់នៅត្រង់ 0។
-\sin(\theta )
ជំនួសតម្លៃ 0 ទៅក្នុងកន្សោម \cos(\theta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(\theta )។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}