វាយតម្លៃ
\frac{1}{y^{9}}
ធ្វើឌីផេរ៉ងស្យែល w.r.t. y
-\frac{9}{y^{10}}
ក្រាហ្វ
លំហាត់
Polynomial
បញ្ហា 5 ស្រដៀង គ្នា៖
\frac { [ ( y ^ { 3 } ) ] ^ { 5 } } { [ ( y ^ { 6 } ) ] ^ { 4 } }
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
\frac{y^{15}}{\left(y^{6}\right)^{4}}
ដើម្បីលើកស្វ័យគុណទៅជាស្វ័យគុណមួយទៀត ត្រូវគុណនិទស្សន្ត។ គុណ 3 និង 5 ដើម្បីទទួលបាន 15។
\frac{y^{15}}{y^{24}}
ដើម្បីលើកស្វ័យគុណទៅជាស្វ័យគុណមួយទៀត ត្រូវគុណនិទស្សន្ត។ គុណ 6 និង 4 ដើម្បីទទួលបាន 24។
\frac{1}{y^{9}}
សរសេរ y^{24} ឡើងវិញជា y^{15}y^{9}។ សម្រួល y^{15} ទាំងនៅក្នុងភាគយក និងភាគបែង។
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{15}}{\left(y^{6}\right)^{4}})
ដើម្បីលើកស្វ័យគុណទៅជាស្វ័យគុណមួយទៀត ត្រូវគុណនិទស្សន្ត។ គុណ 3 និង 5 ដើម្បីទទួលបាន 15។
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{15}}{y^{24}})
ដើម្បីលើកស្វ័យគុណទៅជាស្វ័យគុណមួយទៀត ត្រូវគុណនិទស្សន្ត។ គុណ 6 និង 4 ដើម្បីទទួលបាន 24។
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{y^{9}})
សរសេរ y^{24} ឡើងវិញជា y^{15}y^{9}។ សម្រួល y^{15} ទាំងនៅក្នុងភាគយក និងភាគបែង។
-\left(y^{9}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}y}(y^{9})
បើ F គឺជាបណ្ដាក់នៃអនុគមន៍ឌីផេរ៉ង់ស្យែល f\left(u\right) និង u=g\left(x\right) មានន័យថាបើ F\left(x\right)=f\left(g\left(x\right)\right) នោះដេរីវេនៃ F គឺជាដេរីវេនៃ f ធៀបទៅនឹង u គុណនឹងដេរីវេនៃ g ធៀបទៅនឹង x មានន័យថា \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right)។
-\left(y^{9}\right)^{-2}\times 9y^{9-1}
ដេរីវេនៃពហុធាគឺជាផលបូកនៃដេរីវេនៃតួរបស់វា។ ដេរីវេនៃគ្រប់តួថេរគឺ 0។ ដេរីវេនៃ ax^{n} គឺ nax^{n-1}។
-9y^{8}\left(y^{9}\right)^{-2}
ផ្ទៀងផ្ទាត់។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}