រំលងទៅមាតិកាមេ
ធ្វើឌីផេរ៉ងស្យែល w.r.t. P
Tick mark Image
វាយតម្លៃ
Tick mark Image

ចែករំលែក

\frac{\mathrm{d}}{\mathrm{d}P}(\cos(P))=\left(\lim_{h\to 0}\frac{\cos(P+h)-\cos(P)}{h}\right)
ស​ម្រាប់អនុគមន៍ f\left(x\right) ដេរីវេគឺជាលីមីតនៃ \frac{f\left(x+h\right)-f\left(x\right)}{h} ជា h ខិតទៅ 0 បើលីមីតនោះមាន។
\lim_{h\to 0}\frac{\cos(P+h)-\cos(P)}{h}
ប្រើរូមមន្ដផលបូកសម្រាប់កូស៊ីនុស។
\lim_{h\to 0}\frac{\cos(P)\left(\cos(h)-1\right)-\sin(P)\sin(h)}{h}
ដាក់ជាកត្តា \cos(P)។
\left(\lim_{h\to 0}\cos(P)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\left(\lim_{h\to 0}\sin(P)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
សរសេរលីមីតឡើងវិញ។
\cos(P)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(P)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
ប្រើភាពពិតដែល P ជាចំនួនថេរនៅពេលគណនាលីមីតនៅពេល h ខិតទៅ 0។
\cos(P)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(P)
លីមីត \lim_{P\to 0}\frac{\sin(P)}{P} គឺជា 1។
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
ដើម្បីគណនាលីមីត \lim_{h\to 0}\frac{\cos(h)-1}{h}​ ដំបូងត្រូវគុណភាគយក និងភាគបែងនឹង \cos(h)+1។
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
គុណ \cos(h)+1 ដង \cos(h)-1។
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
ប្រើលក្ខណៈពីតាករ។
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
សរសេរលីមីតឡើងវិញ។
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
លីមីត \lim_{P\to 0}\frac{\sin(P)}{P} គឺជា 1។
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
ប្រើភាពពិតដែល \frac{\sin(h)}{\cos(h)+1} គឺជាអនុគមន៍ជាប់នៅត្រង់ 0។
-\sin(P)
ជំនួសតម្លៃ 0 ទៅក្នុងកន្សោម \cos(P)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(P)។