វាយតម្លៃ (complex solution)
\alpha \beta \left(\alpha +\beta \right)=-12
ដោះស្រាយសម្រាប់ β
\left\{\begin{matrix}\beta =\frac{\sqrt{\alpha ^{2}-\frac{48}{\alpha }}-\alpha }{2}\text{; }\beta =\frac{-\sqrt{\alpha ^{2}-\frac{48}{\alpha }}-\alpha }{2}\text{, }&\alpha \geq 2\sqrt[3]{6}\\\beta =\frac{\sqrt{\alpha ^{4}-48\alpha }}{2\alpha }-\frac{\alpha }{2}\text{; }\beta =-\frac{\sqrt{\alpha ^{4}-48\alpha }}{2\alpha }-\frac{\alpha }{2}\text{, }&\alpha <0\end{matrix}\right.
ដោះស្រាយសម្រាប់ α
\left\{\begin{matrix}\alpha =\frac{\sqrt{\beta ^{2}-\frac{48}{\beta }}-\beta }{2}\text{; }\alpha =\frac{-\sqrt{\beta ^{2}-\frac{48}{\beta }}-\beta }{2}\text{, }&\beta \geq 2\sqrt[3]{6}\\\alpha =\frac{\sqrt{\beta ^{4}-48\beta }}{2\beta }-\frac{\beta }{2}\text{; }\alpha =-\frac{\sqrt{\beta ^{4}-48\beta }}{2\beta }-\frac{\beta }{2}\text{, }&\beta <0\end{matrix}\right.
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}