រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x^{2}-2x+1+3x-3<0
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(x-1\right)^{2}។
x^{2}+x+1-3<0
បន្សំ -2x និង 3x ដើម្បីបាន x។
x^{2}+x-2<0
ដក​ 3 ពី 1 ដើម្បីបាន -2។
x^{2}+x-2=0
ដើម្បីដោះស្រាយវិសមភាព ត្រូវដាក់ផ្នែកខាងឆ្វេងដាក់ជាកត្តា។ ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជា​ចម្លើយនៃ​សមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-1±\sqrt{1^{2}-4\times 1\left(-2\right)}}{2}
គ្រប់សមីការរ​ដែល​មានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយ​ដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 1 សម្រាប់ a, 1 សម្រាប់ b និង -2 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
x=\frac{-1±3}{2}
ធ្វើការគណនា។
x=1 x=-2
ដោះស្រាយសមីការ x=\frac{-1±3}{2} នៅពេល ± គឺជាប្រមាណវិធីបូក និងនៅពេល ± គឺជាប្រមាណវិធីដក។
\left(x-1\right)\left(x+2\right)<0
សរសេរវិសមភាពឡើងវិញដោយប្រើ​ចម្លើយដែលទទួលបាន។
x-1>0 x+2<0
សម្រាប់ផលគុណជាអវិជ្ជមាន x-1 និង x+2 ត្រូវតែ​ជាសញ្ញា​ផ្ទុយគ្នា។ ពិចារណា​ករណី​ដែល​ x-1 ជាចំនួនអវិជ្ជមាន និង x+2 ជាចំនួនអវិជ្ជមាន។
x\in \emptyset
នេះគឺជាមិនពិត​សម្រាប់ x ណាមួយ។
x+2>0 x-1<0
ពិចារណា​ករណី​ដែល​ x+2 ជាចំនួនអវិជ្ជមាន និង x-1 ជាចំនួនអវិជ្ជមាន។
x\in \left(-2,1\right)
ចម្លើយដែលផ្ទៀងផ្ទាត់​វិសមភាពទាំងពីរគឺ x\in \left(-2,1\right)។
x\in \left(-2,1\right)
ចម្លើយចុងក្រោយ គឺជាប្រជុំនៃចម្លើយដែលទទួលបាន។