Негізгі мазмұнды өткізіп жіберу
z мәнін табыңыз
Tick mark Image

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

z^{2}-z=1
Екі жағынан да z мәнін қысқартыңыз.
z^{2}-z-1=0
Екі жағынан да 1 мәнін қысқартыңыз.
z=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)}}{2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 1 санын a мәніне, -1 санын b мәніне және -1 санын c мәніне ауыстырыңыз.
z=\frac{-\left(-1\right)±\sqrt{1+4}}{2}
-4 санын -1 санына көбейтіңіз.
z=\frac{-\left(-1\right)±\sqrt{5}}{2}
1 санын 4 санына қосу.
z=\frac{1±\sqrt{5}}{2}
-1 санына қарама-қарсы сан 1 мәніне тең.
z=\frac{\sqrt{5}+1}{2}
Енді ± плюс болған кездегі z=\frac{1±\sqrt{5}}{2} теңдеуін шешіңіз. 1 санын \sqrt{5} санына қосу.
z=\frac{1-\sqrt{5}}{2}
Енді ± минус болған кездегі z=\frac{1±\sqrt{5}}{2} теңдеуін шешіңіз. \sqrt{5} мәнінен 1 мәнін алу.
z=\frac{\sqrt{5}+1}{2} z=\frac{1-\sqrt{5}}{2}
Теңдеу енді шешілді.
z^{2}-z=1
Екі жағынан да z мәнін қысқартыңыз.
z^{2}-z+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын -1 санын 2 мәніне бөлсеңіз, -\frac{1}{2} саны шығады. Содан соң, теңдеудің екі жағына -\frac{1}{2} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
z^{2}-z+\frac{1}{4}=1+\frac{1}{4}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы -\frac{1}{2} бөлшегінің квадратын табыңыз.
z^{2}-z+\frac{1}{4}=\frac{5}{4}
1 санын \frac{1}{4} санына қосу.
\left(z-\frac{1}{2}\right)^{2}=\frac{5}{4}
z^{2}-z+\frac{1}{4} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(z-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
z-\frac{1}{2}=\frac{\sqrt{5}}{2} z-\frac{1}{2}=-\frac{\sqrt{5}}{2}
Қысқартыңыз.
z=\frac{\sqrt{5}+1}{2} z=\frac{1-\sqrt{5}}{2}
Теңдеудің екі жағына да \frac{1}{2} санын қосыңыз.