Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

a+b=7 ab=1\times 6=6
Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек z^{2}+az+bz+6 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
1,6 2,3
ab оң болғандықтан, a және b белгілері бірдей болады. a+b оң болғандықтан, a және b мәндері оң болады. Көбейтіндісі 6 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
1+6=7 2+3=5
Әр жұптың қосындысын есептеңіз.
a=1 b=6
Шешім — бұл 7 қосындысын беретін жұп.
\left(z^{2}+z\right)+\left(6z+6\right)
z^{2}+7z+6 мәнін \left(z^{2}+z\right)+\left(6z+6\right) ретінде қайта жазыңыз.
z\left(z+1\right)+6\left(z+1\right)
Бірінші топтағы z ортақ көбейткішін және екінші топтағы 6 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(z+1\right)\left(z+6\right)
Үлестіру сипаты арқылы z+1 ортақ көбейткішін жақша сыртына шығарыңыз.
z^{2}+7z+6=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
z=\frac{-7±\sqrt{7^{2}-4\times 6}}{2}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
z=\frac{-7±\sqrt{49-4\times 6}}{2}
7 санының квадратын шығарыңыз.
z=\frac{-7±\sqrt{49-24}}{2}
-4 санын 6 санына көбейтіңіз.
z=\frac{-7±\sqrt{25}}{2}
49 санын -24 санына қосу.
z=\frac{-7±5}{2}
25 санының квадраттық түбірін шығарыңыз.
z=-\frac{2}{2}
Енді ± плюс болған кездегі z=\frac{-7±5}{2} теңдеуін шешіңіз. -7 санын 5 санына қосу.
z=-1
-2 санын 2 санына бөліңіз.
z=-\frac{12}{2}
Енді ± минус болған кездегі z=\frac{-7±5}{2} теңдеуін шешіңіз. 5 мәнінен -7 мәнін алу.
z=-6
-12 санын 2 санына бөліңіз.
z^{2}+7z+6=\left(z-\left(-1\right)\right)\left(z-\left(-6\right)\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына -1 санын, ал x_{2} мәнінің орнына -6 санын қойыңыз.
z^{2}+7z+6=\left(z+1\right)\left(z+6\right)
p-\left(-q\right) түріндегі өрнектердің барлығын келесідей ықшамдаңыз: p+q.